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 1.0  Introduction 
 With  the  rising  popularity  of  wearable  technology,  there  has  been  a  significant  growth  in  the 
 number  of  products  designed  to  encourage  health  and  wellness.  Namely,  smartwatches  have 
 multiple  functionalities  that  allow  users  to  track  physical  exercise  and  various  other  aspects 
 of  health.  Beyond  an  informative  role,  wearable  fitness  trackers  also  serve  as  a  visual 
 reminder  to  promote  healthy  habits,  while  holding  users  accountable  for  personal  goals  or 
 fitness  milestones.  For  example,  the  Centers  for  Disease  Control  and  Prevention  (CDC) 
 recommends  adults  to  undergo  150  minutes  of  aerobic  activity  each  week  for  a  healthy 
 lifestyle  [1].  The  use  of  a  fitness  tracker  easily  allows  users  to  track  their  progress  in  meeting 
 this  goal  and  reminds  them  to  stay  active.  Our  project  is  centered  around  the  implementation 
 of  a  wearable  fitness  tracker  using  a  combination  of  microcontrollers  and  other  hardware. 
 This  tracker  will  collect  and  display  data  on  steps  taken  and  heart  rate.  Additional  features 
 may  include  notifications  reminding  the  user  to  complete  their  fitness  goals  or  to  signal  to  the 
 user  that  they  have  achieved  them.  More  details  on  the  scope  of  the  project  and  the 
 implementation of the fitness tracker are available in the following sections. 

 2.0 Project Scope 
 The  current  scope  of  the  project  has  remained  relatively  similar  to  what  was  outlined  in  the 
 proposal.  The  wearable  fitness  tracker  displays  the  number  of  steps  taken  by  the  user  and 
 their  heart  rate.  Other  features  include  sound  notifications  to  signal  the  completion  of  fitness 
 goals  or  to  act  as  an  indicator  of  current  progress.  A  3-axis  accelerometer  is  integrated  into 
 the  design  to  collect  information  on  the  number  of  steps  taken  by  the  user.  This  is  done  by 
 processing  the  accelerations  experienced  by  the  fitness  tracker  when  it  is  worn  by  the  user. 
 This  data  is  used  to  create  a  pedometer  (see  Section  4.1)  Additionally,  a  heart  rate  sensor  is 
 used  to  display  information  collected  from  the  user  on  the  TFT  LCD  integrated  into  the 
 microcontroller. The heart rate sensor is used to monitor heart rate and pulse oximetry. 

 There  are  several  aspects  of  the  design  mentioned  in  the  proposal  that  were  omitted  from  the 
 final  prototype.  The  proposed  design  included  capacitive  touch  sensors  using  a  built-in 
 ESP32  library.  However  this  was  omitted  during  the  design  process  to  reduce  overall 
 complexity  and  focus  on  perfecting  the  core  functionalities  of  the  fitness  tracker.  Bluetooth 
 and  a  Wi-Fi  module  for  a  mobile  connection  were  considered  within  the  original  project 
 scope,  but  were  also  omitted  due  to  complexity  and  time  constraints.  Furthermore,  processing 
 of  the  heart  rate  sensor  data  to  detect  different  activity  levels  and  alert  the  user  of  potential 
 health  risks  was  originally  included  in  the  project  scope.  This  was  also  excluded  from  the 
 final  design  since  the  primary  focus  of  the  design  shifted  to  the  development  of  the 
 pedometer  algorithm  and  associated  processing  of  the  accelerometer  sensor  data.  Moreover, 
 analysis  of  expected  and  healthy  heart  rates  is  dependent  on  the  individual  and  would  require 
 additional input from the user. 
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 3.0 Final Design 
 The  hardware  components  used  in  this  project  are  listed  in  Appendix  A.  Additionally,  an 
 architecture  diagram  is  shown  in  Figure  1  to  show  the  connectivity  between  components  and 
 user  input  into  the  system.  The  following  sections  describe  the  main  functionalities  of  the 
 final  prototype  and  how  they  were  implemented.  The  full  code  for  the  prototype  is  available 
 at  https://github.com/avelynkwong/MIE438-Fitbit  ,  and  a  video  demo  can  be  viewed  at 
 https://play.library.utoronto.ca/watch/9e548edfaa146d6679854729a9d379d0  . 

 Figure 1.  Architecture Diagram for Fitness Tracker 

 3.1 Hardware Components and Physical Design 
 The  ESP32  feather  board  is  selected  as  the  microcontroller  for  the  fitness  tracker.  This  is  a 
 suitable  choice  since  its  built-in  features  allow  for  prioritization  of  software  development  and 
 algorithm optimization over hardware integration challenges. 

 The  sensors  used  are  also  complementary  to  the  choice  of  microcontroller  and  the  fitness 
 tracker  application.  The  heart  rate  sensor  and  accelerometer  can  be  powered  using  the  3V 
 output  of  the  ESP32,  and  can  easily  communicate  to  the  microcontroller  over  the  I2C 
 protocol  at  a  speed  that  appropriately  captures  the  desired  data  from  the  user.  The  heart  rate 
 sensor  is  used  to  generate  BPM  data,  and  the  accelerometer  is  used  to  track  steps.  Both  values 
 are  displayed  on  the  microcontroller’s  built-in  LCD,  which  acts  as  the  screen  for  the  fitness 
 tracker.  The  microcontroller  also  possesses  a  built-in  LED  that  is  used  to  specify  different 
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 activity  states.  This  is  described  in  detail  in  Section  4.3.  Lastly,  a  speaker  is  included  to 
 provide audio output and notify the user on progress or completion of step-associated goals. 

 To  hold  all  the  components,  an  enclosure  is  3D-printed  and  strapped  to  the  user’s  arm  using 
 an  adjustable  wrist  strap.  A  battery  is  also  used  to  wirelessly  power  the  microcontroller  and 
 sensors.  The  battery  status  is  also  indicated  on  the  LCD  to  inform  the  user  when  they  need  to 
 recharge the fitness tracker. 

 3.2   Pedometer Algorithm 
 To  detect  user  steps  and  display  the  step  count  on  the  fitness  tracker,  a  pedometer  was 
 developed  in  code.  Since  the  fitness  tracker  is  worn  on  the  user’s  wrist,  the  detection  of  steps 
 is  performed  by  tracking  the  swinging  motion  of  the  arm  that  is  associated  with  taking  steps. 
 Based  on  the  orientation  of  the  accelerometer  on  the  user’s  wrist,  the  acceleration  magnitude 
 in the x-y plane was calculated using the following formula: 

 𝑎𝑐𝑐𝑒  𝑙 
 𝑥𝑦 

=  𝑎𝑐𝑐𝑒  𝑙 
 𝑥 

 2 +  𝑎𝑐𝑐𝑒  𝑙 
 𝑦 
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 To  filter  out  the  high  frequency  noise  on  the  accelerometer  readings,  a  moving  average  was 
 implemented  using  a  queue/rolling  buffer  as  described  in  Section  4.3.  The  averaged 
 acceleration  readings  follow  a  sinusoidal  pattern,  since  acceleration  increases  to  a  maximum 
 when  the  user’s  arm  is  mid-swing,  and  decreases  to  0  when  the  arm  begins  changing 
 direction.  To  convert  this  output  into  a  discrete  number  of  steps,  the  peaks  in  acceleration  are 
 detected  using  an  acceleration  threshold.  This  is  set  to  11.2  m/s  2  based  on  testing  results. 
 Once  the  acceleration  values  transition  from  below  the  threshold  to  above,  the  number  of 
 steps  are  incremented  and  the  boolean  variable  isBelowThresh  is  set  to  False.  This  boolean  is 
 set  back  to  True  when  the  values  drop  below  the  threshold.  This  ensures  that  multiple  steps 
 are  not  being  registered  if  the  acceleration  exceeds  the  threshold  for  numerous  successive 
 recorded  values.  The  use  of  a  moving  average  also  helps  smooth  out  the  output  acceleration 
 signal and prevent accidental step increments. 

 4.0 Course Concept Integration 
 The  course  concepts  that  were  applied  in  the  design  of  the  fitness  tracker  include  the  use  of 
 I2C  communication,  serial  peripheral  interface,  state  machines  and  sensor  data  processing 
 techniques. 

 4.1 I2C communication 
 The  accelerometer  and  heart  rate  sensor  both  use  the  I2C  (Inter-Integrated-Circuit  Bus) 
 protocol  to  communicate  with  the  ESP32.  The  I2C  protocol  is  a  serial  standard,  meaning  that 
 a  single  pin  sends  one  bit  at  a  time  sequentially.  It  uses  a  two-wire  interface,  sending  data 
 over  the  SDA  line  and  clock  time  over  the  SCL  line.  Our  device  uses  a  single  master  device, 
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 the  ESP32-S3  microcontroller,  and  two  slave  devices,  the  accelerometer  and  heart  rate  sensor. 
 The communication process for the single master mode is as follows: 

 Step  General process  Fitness tracker 

 1  Master sends a START 
 condition and addresses 
 the target slave. 

 The master device is the ESP32-S3 microcontroller, 
 which will place the address of either the 
 accelerometer or the heart rate sensor on the bus. 

 2  All slave devices monitor 
 the bus for their address. 

 The accelerometer and the heart rate sensor are both 
 monitoring the bus for their address. 

 3  Handshaking occurs and 
 communication starts 

 The accelerometer or heart rate sensor would send 
 data to the ESP32-S3 microcontroller. 

 The  ESP32-S3  microcontroller  can  support  standard-mode  and  fast-mode  clock  rates,  which 
 corresponds  to  a  range  of  100KHz  to  400KHz  [2].  The  higher  the  clock  rate,  the  faster  data 
 can  be  transmitted  between  devices  on  the  I2C  bus.  When  devices  are  connected  to  the  same 
 I2C  bus,  they  must  operate  at  a  common  clock  rate  to  ensure  synchronized  and  reliable 
 communication.  The  MPU6050  accelerometer  and  the  MAX30102  heart  rate  sensor  both 
 have  a  clock  rate  of  400kHz,  therefore  the  devices  can  have  synchronized  and  reliable 
 communication with the ESP32-S3 [3][4]. 

 4.2 Finite State Machines 
 In  the  context  of  the  fitness  tracker,  the  utilization  of  Finite  State  Machines  (FSMs)  manages 
 the  dynamic  behavior  and  transition  of  the  different  states  based  on  user  interaction. 
 Specifically,  predefined  states  are  distinguished  by  varying  levels  of  physical  activity 
 detected  through  accelerometer  readings.  These  incorporate  current  context  into  the 
 functionality of the device. 

 As  discussed  in  lecture,  state  transitions  are  governed  by  specific  conditions  or  actions  that 
 the  user  wearing  the  fitness  tracker  experiences,  such  as  achieving  a  step  count  goal  or 
 undergoing  changes  in  physical  activity  intensity.  The  current  design  uses  the  accelerometer’s 
 data  to  inform  the  microcontroller  of  different  activity  levels  (low,  moderate,  or  high),  and 
 each  state  triggers  a  different  payload  in  the  form  of  LED  color  changes  on  the 
 microcontroller  board.  In  addition,  there  is  a  “done”  state  that  indicates  that  the  step  goal  has 
 been  reached,  which  is  followed  by  a  short  “victory”  sound  and  the  LED  turning  green.  The 
 table below summarizes the states in detail: 

 State  Condition  Payload 
 Effect 

 Description 

 DONE  n_steps >=  Green  Step goal has been achieved. The 
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 STEP_GOAL  LED, 
 Victory 
 Sound 

 NeoPixel LED pulses green with a 
 victory sound, symbolizing the 
 completion of the daily activity 
 goal. 

 ACTIVITY_ 
 LOW 

 accelAvgMagnitude < 
 LOWER_ACTIVITY_T 
 HRESH 

 Red 
 LED 

 Low level of physical activity. The 
 NeoPixel LED pulses red, 
 indicating a relatively sedentary 
 state or very light activity. 

 MODERATE  LOWER_ACTIVITY_T 
 HRESH <= 
 accelAvgMagnitude < 
 UPPER_ACTIVITY_TH 
 RESH 

 Purple 
 LED 

 Moderate physical activity. The 
 NeoPixel LED pulses purple, 
 denoting a healthy, moderate level 
 of movement, such as walking or 
 light jogging. 

 ACTIVITY_ 
 HIGH 

 accelAvgMagnitude >= 
 UPPER_ACTIVITY_TH 
 RESH 

 Blue 
 LED 

 High level of physical activity. 
 The NeoPixel LED pulses blue, 
 indicating vigorous activity or 
 exercise that significantly 
 increases heart rate and 
 movement. 

 This  implementation  of  FSM  incorporates  the  concept  of  state  minimization  and  efficient 
 transition  management.  For  instance,  the  victory  sound  and  the  green  LED  represent  a 
 combined  payload  action  that  could  have  otherwise  been  two  different  states.  Moreover,  by 
 structuring  the  code  to  reflect  a  clear  set  of  states  and  transitions,  the  fitness  tracker  output  is 
 organized  in  a  way  that  is  interactive  with  the  user  and  can  assist  them  with  intuitively 
 understanding its functionality. 

 4.3 Sensor Data Processing 
 In  order  to  interface  with  the  various  sensors  used  by  the  fitness  tracker,  a  series  of  processing 
 steps were required to integrate the sensor-generated values into the overall program. 

 Firstly,  to  create  a  reliable  pedometer  for  measuring  steps,  the  acceleration  values  generated 
 by  the  MPU-6050  sensor  were  required.  In  a  preliminary  test,  the  accelerometer  was  strapped 
 onto  a  user’s  arm  and  the  arm  movements  associated  with  walking  and  running  were 
 simulated.  Plotting  the  accelerometer  readings  during  this  process  revealed  that  the  sensor 
 readings  were  very  sensitive  and  produced  a  noisy/spiky  output  rather  than  a  smooth 
 sinusoidal  output  that  is  desired  for  pedometer  calculations.  To  mitigate  this  noise,  a  moving 
 average  was  implemented  as  a  form  of  low-pass  filter.  This  involves  entering  the 
 instantaneous  acceleration  values  into  a  queue  of  fixed  size,  and  calculating  the  effective 
 sensor  readings  as  the  average  of  the  values  in  the  queue.  Each  time  a  new  acceleration  value 
 is  enqueued,  the  oldest  acceleration  value  is  dequeued.  Using  a  queue  size  of  10,  the 
 magnitude  of  acceleration  in  the  XY  plane  followed  a  much  smoother  sinusoidal  output  (see 
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 figures  below)  that  could  be  feasibly  used  for  measuring  steps  through  peak  detection.  The 
 algorithm  for  the  pedometer  is  described  in  detail  in  Section  3.2.  The  same  moving  average 
 can  also  be  implemented  for  the  heart  rate  sensor.  However,  generation  of  BPM  values  is 
 affected  by  how  frequently  the  checkForBeat()  function  is  called  in  the  main  loop  of  the 
 program  (more  detail  on  this  in  Section  5.0).  It  was  determined  through  testing  that 
 integration  of  the  moving  average  added  delays  that  resulted  in  incomplete  detection  of  all 
 beats,  leading  to  inaccuracies  in  the  calculated  BPM  values.  Since  it  is  less  essential  to  have 
 very  stable  BPM  readings,  the  moving  average  is  not  incorporated  for  processing  the  heart 
 rate sensor values. 

 Figure 2. Acceleration without Low-Pass Filter 

 Figure 3. Acceleration with Low-Pass Filter 

 Beyond  smoothing  out  noisy  accelerometer  readings,  a  method  to  convert  the  analog 
 acceleration  values  into  a  peak/no-peak  state  to  measure  discrete  steps  is  required.  Since  the 
 accelerometer  signal  is  only  used  to  increment  the  step  count  and  does  not  lead  to  any  sort  of 
 control  output,  small  inaccuracies  in  the  exact  times  a  step  is  registered  can  be  tolerated. 
 Thus,  a  simple  comparator  is  implemented  in  software.  This  involves  setting  a  threshold 
 above which a peak in acceleration is detected, corresponding to a single step taken. 

 4.4 Code Structure 
 The  main  logic  for  the  fitness  tracker  was  programmed  in  C++.  Most  of  the  code  was 
 structured  to  prioritize  readability  rather  than  implementing  various  low-level  optimization 
 techniques,  since  it  was  not  necessary  to  create  an  extremely  efficient  program  with  minimal 
 time  delays  for  the  purposes  of  the  prototype.  However,  certain  code  practices  discussed  in 
 class  were  still  incorporated  into  the  program.  For  example,  code  that  was  executed 
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 regardless  of  any  calculated  system  state  was  implemented  as  a  series  of  inline 
 functions/macros  within  the  main  loop.  This  results  in  less  clean  code  but  reduces  overhead 
 that  would  otherwise  be  introduced  by  defining  numerous  functions  and  calling  them  from 
 within the loop. 

 5.0 Design and Build of Prototype 
 The enclosure and the layout of the electronic components were modeled in CAD, and then 
 assembled within the 3D printed enclosure, as shown in Figure 4. 

 Figure 4. Layout of components (left), and parts assembled in enclosure (right) 

 The user interface of the pedometer displays the user’s BPM, their step count and the current 
 battery level, as shown in Figure 5. 

 Figure 5. Physical Build of Prototype 
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 6.0 Testing 
 The  majority  of  the  testing  for  this  design  was  centered  around  determining  how  to  reliably 
 leverage  the  values  produced  from  the  accelerometer  and  heart  rate  sensor  to  provide  feasible 
 fitness tracker functionality, since the hardware integration was relatively straightforward. 

 Firstly,  to  test  the  accelerometer,  the  raw  x,  y,  and  z  accelerations  were  plotted  while  a  team 
 member  held  the  accelerometer  and  swung  their  arm  in  a  typical  walking  motion.  This 
 allowed  for  visualization  of  the  acceleration  values  and  determination  of  which  axes  were 
 relevant  for  detecting  arm  motion.  The  acceleration  in  the  z-axis  measured  accelerations  in 
 the  plane  perpendicular  to  arm  movement,  so  this  was  omitted  from  the  sensor  data  used  to 
 predict  steps.  Furthermore,  it  was  shown  from  testing  that  the  accelerations  were  highly  noisy 
 and  difficult  to  use  without  some  form  of  data  processing.  Thus,  a  moving  average  was 
 implemented  (as  described  in  Section  4.4),  which  provided  a  much  smoother  sinusoidal 
 output.  To  detect  peaks  in  the  sinusoid  (corresponding  to  steps),  an  upper  threshold  was 
 determined  from  plotting  of  x-y  acceleration  magnitude  during  physical  testing.  This 
 approach was proven to be quite reliable in measuring steps. 

 Next,  we  tested  the  heart  rate  sensor  to  ensure  that  it  could  accurately  capture  and  generate 
 BPM  information.  Testing  the  heart  rate  sensor  both  in  isolation  and  within  the  main  program 
 with  other  logic  revealed  an  interesting  bug—the  heart  rate  sensor  logic  produced  much 
 lower  and  likely  incorrect  values  when  executed  in  the  main  program.  After  analyzing  the 
 root  cause  of  the  error,  it  was  evident  that  the  heart  rate  sensor  calculates  BPM  based  on  the 
 time  passed  between  successive  beats,  which  are  detected  using  a  checkForBeat()  function 
 provided  by  the  heart  rate  sensor  library.  This  works  fine  when  the  heart  rate  sensor  logic  is 
 executed  individually  in  a  loop  with  minimal  delays.  However,  once  additional  delays  from 
 other  logic  and  sensor  processing  steps  are  introduced  into  the  loop,  the  checkForBeat() 
 function  is  executed  less  rapidly  and  some  heartbeats  remain  undetected.  To  solve  this  issue, 
 a  polling  loop  was  included  that  runs  the  checkForBeat()  function  multiple  times 
 consecutively, such that adjacent heart rates could be detected and used to update the BPM. 

 7.0 Challenges and Future Work 
 There  were  multiple  challenges  encountered  throughout  the  design  process.  Some  of  these 
 challenges  were  addressed  directly  in  a  manner  that  preserved  the  basic  functionality  of  the 
 prototype,  and  others  were  omitted  in  the  prototype  and  left  for  future  iterations  of  the  design. 
 These  challenges,  as  well  as  suggestions  for  improvement,  are  detailed  in  the  following 
 sections. 

 7.1 Pedometer 
 The  implemented  pedometer  algorithm  uses  acceleration  magnitude  in  the  x-y  plane  collected 
 from  the  accelerometer  when  the  user  swings  their  arms.  This  algorithm  is  quite  simple  and 
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 uses  an  average  acceleration  and  a  comparator  to  detect  if  a  step  has  been  taken.  However, 
 the  data  collected  by  the  accelerometer  is  highly  dependent  on  the  orientation  of  the 
 accelerometer.  It  was  found  through  testing  that  if  the  user  rotates  their  wrist  substantially 
 while  walking/running,  this  could  result  in  incomplete  or  inaccurate  detection  of  steps.  To 
 improve  the  reliability  of  the  pedometer  algorithm,  integration  of  the  rotational  data  collected 
 from  the  accelerometer  could  be  used  to  adjust  for  rotation  and  dictate  which  of  the  3-axis 
 accelerations should be used in the pedometer calculation at any given moment. 

 Furthermore,  the  use  of  a  single  threshold  for  detection  of  steps  may  not  be  robust  to  different 
 individuals  and/or  different  levels  of  activity  (the  peaks  in  detected  acceleration  may  differ). 
 A  more  robust  algorithm  could  involve  detecting  the  rising  and  falling  of  the  output  signal  for 
 a  certain  period  of  time,  leading  to  a  more  reliable  indicator  of  step  progression,  regardless  of 
 absolute  acceleration  values.  Another  possible  method  of  creating  a  highly  accurate  and 
 generalizable  pedometer  algorithm  would  be  to  train  a  machine  learning  model  on  sequential 
 accelerometer  readings,  allowing  for  analysis  of  the  user’s  gait  and  incrementation  of  steps. 
 However,  this  introduces  significant  computational  cost  and  data  collection  requirements,  and 
 cannot be feasibly executed on the microcontroller selected for the scale of this project. 

 7.2 Heart Rate Sensor 
 The  MAX30102  heart  rate  module  used  in  this  design  relies  on  polling  and  fast  execution 
 within  a  loop  to  collect  user  data.  However,  the  supplementary  code  for  other  sensors  and 
 logic  adds  timing  delays  to  the  loop  resulting  in  occasional  detection  errors.  To  correct  this, 
 the  implementation  of  interrupts  was  considered,  but  ultimately  omitted  due  to  time 
 constraints  and  to  avoid  a  set  of  complicated  logic  for  execution.  Currently,  the  heart  rate 
 sensor  library  is  being  used  directly  and  contains  logic  for  checking  for  heartbeats  and 
 computing  BPM  based  on  IR  values.  Modifying  this  logic  to  incorporate  interrupts  would 
 require  substantial  time  and  testing,  and  it  is  possible  that  the  execution  of  complex  logic  for 
 determining  BPM  could  lead  to  a  locked  system  if  multiple  interrupts  pile  up.  Nonetheless, 
 the  use  of  interrupts  should  be  explored  for  future  design  iterations  to  ensure  that  each 
 detected  heartbeat  is  factored  into  the  overall  BPM,  leading  to  more  accurate  and  timely 
 calculations of heart rate. 

 7.3 Battery Selection 
 The  battery  chosen  to  power  the  ESP32  was  ordered  from  Amazon.  The  team  ran  into  issues 
 powering  the  device  during  our  initial  tests.  We  discovered  that  the  positive  and  negative 
 wires  in  the  battery  connector  were  opposite  to  the  positive  and  negative  terminals  of  the 
 ESP32  connector.  We  learned  that  Adafruit  produces  proprietary  batteries  and  connectors  that 
 have  the  correct  orientation  to  be  used  with  the  ESP32,  and  it  is  a  common  issue  for  Amazon 
 batteries  to  have  the  opposite  wire  configuration.  To  resolve  this  issue,  we  carefully  removed 
 the  crimps  from  the  Amazon  battery  connector  and  switched  them  into  the  correct  positions. 
 This  allowed  the  positive  end  of  the  wire  to  connect  to  the  positive  terminal  on  the  ESP32, 
 and  the  negative  end  of  the  wire  to  connect  to  the  negative  terminal.  After  this  change,  the 
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 fitness  tracker  was  able  to  be  powered  by  the  battery.  In  the  future,  we  would  use  Adafruit’s 
 proprietary  batteries,  or  ensure  that  the  battery  we  are  sourcing  has  wires  in  the  correct 
 configuration prior to testing. 

 7.4 User Interaction 
 User  interaction  is  an  integral  part  of  any  fitness  tracker.  For  future  iterations  of  the  design, 
 we  could  revisit  the  decision  to  exclude  capacitive  touch  and  wireless  connectivity, 
 evaluating  how  these  features  could  enhance  the  user  experience  by  facilitating  data 
 synchronization,  bluetooth  connection  to  smartphones,  and  enabling  interactive  features.  For 
 example,  haptic  sensors  can  be  incorporated  to  enable  different  user-defined  actions  such  as 
 resetting  the  steps,  playing  music  and  more.  Additionally,  the  step  goal  is  currently  hardcoded 
 into  the  program.  Being  able  to  accept  user  input  and  adjust  the  goal  based  on  the  individual 
 would be a very useful feature to implement in the future. 

 8.0 Conclusion 
 The  primary  goal  of  this  project  was  to  design  and  assemble  a  wireless  wearable  fitness 
 tracker  to  track  user  steps  and  heart  rate  to  help  users  commit  to  and  reach  their  health  and 
 fitness  goals.  This  was  achieved  using  the  ESP32  S3  feather  board  and  its  built-in  features  in 
 addition  to  a  heart  rate  sensor,  accelerometer,  and  speaker.  The  built-in  features  of  the  ESP32 
 enabled  the  prioritization  of  software  development  and  algorithm  implementation  over 
 hardware-related  integration  challenges,  therefore  enabling  focus  on  the  pedometer  algorithm 
 and  a  finite  state  machine  to  communicate  activity  levels  and  goal  progress.  Multiple 
 challenges  were  encountered  throughout  the  design  process  including  the  orientation 
 sensitivity  of  the  accelerometer,  code  delays  impacting  heart  rate  sensor  readings,  as  well  as 
 the  increased  complexity  and  time  constraints  pertaining  to  the  original  project  scope.  These 
 obstacles  served  as  great  learning  experiences  and  a  reminder  of  the  nuances  associated  with 
 developing embedded systems. 

 In  essence,  the  prototype  built  for  this  project  served  as  a  strong  baseline  for  future  iterations 
 of  the  design.  Further  developments  may  include  a  more  robust  pedometer  algorithm  that 
 incorporates  the  rising  and  falling  pattern  of  the  output  signal,  and  the  use  of  interrupts  or 
 higher-grade  hardware  to  enable  more  reliable  sensor  readings  and  reduce  timing  delays. 
 Additionally,  multiple  features  could  be  integrated  into  the  design  to  improve  user  interaction 
 and personalization. 

 10 



 9.0 References 
 [1] Lindberg, S. (n.d.).  How Many Steps Do I Need  a Day?  . Healthline. 
 https://www.healthline.com/health/how-many-steps-a-day#to-maintain-fitness 

 [2] “Inter-Integrated Circuit (I2C) - ESP32 -  — ESP-IDF Programming Guide v5.2.1 
 documentation.” 
 https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html 
 #:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400K 
 Hz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20f 
 requency%20accurate  . 

 [3] Maxim Integrated, MAX30102 High-Sensitivity pulse oximeter and Heart-Rate sensor for 
 wearable health. 2018. [Online]. Available: 
 https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf 

 [4] InvenSense Inc., “MPU-6000 and MPU-6050 Register map and descriptions,” 
 RM-MPU-6000A-00, Aug. 2013. [Online]. Available: 
 https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf 

 11 

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf


 Appendix A: Hardware Components 
 Table  A.1  below  details  the  hardware  design  choices  implemented  for  this  project  as  well  as 
 the component function and reasoning with specific reference to the fitness tracker design. 

 Table A.1 Hardware Components 

 Picture  Component  Reasoning 

 Microcontroller Unit 
 (MCU), ESP32-S3 

 Processing  unit  for  executing  fitness  tracker 
 logic.  Also  contains  an  LCD  screen  and 
 LED for multimodal data output 

 Heart Rate 
 Sensor/Pulse Sensor, 
 MAX30102 

 Used to measure the user’s BPM. 

 Accelerometer and 
 Gyroscope, 
 MPU-6050 

 Used to create a pedometer to track steps. 

 Battery, 3.7V Li-Po 
 battery, 500mAh 

 Used to wirelessly power the 
 microcontroller. 

 USB-C Power 
 Connection 

 Used to upload code to the microcontroller. 

 3D-Printed 
 Enclosure 

 Used to house all the hardware components. 

 Wrist strap  Used to secure the enclosure and 
 components to the user’s wrist. 

 Speaker  Used to produce audible notifications for 
 when the user has made progress or reached 
 their fitness goal. 
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