
 U NIVERSITY OF T ORONTO

 FINAL PROJECT

 MIE438 - MICROCONTROLLERS AND EMBEDDED MICROPROCESSORS

 FITNESS TRACKER

 Authors:

 Avelyn Wong — 1005108786

 Daniel Choi — 1004942743

 Esme Bonnell — 1006221303

 Sophie Miller — 1005811392

 Professor:

 Matthew Mackay

 April 12 nd , 2023

 1.0 Introduction
 With the rising popularity of wearable technology, there has been a significant growth in the
 number of products designed to encourage health and wellness. Namely, smartwatches have
 multiple functionalities that allow users to track physical exercise and various other aspects
 of health. Beyond an informative role, wearable fitness trackers also serve as a visual
 reminder to promote healthy habits, while holding users accountable for personal goals or
 fitness milestones. For example, the Centers for Disease Control and Prevention (CDC)
 recommends adults to undergo 150 minutes of aerobic activity each week for a healthy
 lifestyle [1]. The use of a fitness tracker easily allows users to track their progress in meeting
 this goal and reminds them to stay active. Our project is centered around the implementation
 of a wearable fitness tracker using a combination of microcontrollers and other hardware.
 This tracker will collect and display data on steps taken and heart rate. Additional features
 may include notifications reminding the user to complete their fitness goals or to signal to the
 user that they have achieved them. More details on the scope of the project and the
 implementation of the fitness tracker are available in the following sections.

 2.0 Project Scope
 The current scope of the project has remained relatively similar to what was outlined in the
 proposal. The wearable fitness tracker displays the number of steps taken by the user and
 their heart rate. Other features include sound notifications to signal the completion of fitness
 goals or to act as an indicator of current progress. A 3-axis accelerometer is integrated into
 the design to collect information on the number of steps taken by the user. This is done by
 processing the accelerations experienced by the fitness tracker when it is worn by the user.
 This data is used to create a pedometer (see Section 4.1) Additionally, a heart rate sensor is
 used to display information collected from the user on the TFT LCD integrated into the
 microcontroller. The heart rate sensor is used to monitor heart rate and pulse oximetry.

 There are several aspects of the design mentioned in the proposal that were omitted from the
 final prototype. The proposed design included capacitive touch sensors using a built-in
 ESP32 library. However this was omitted during the design process to reduce overall
 complexity and focus on perfecting the core functionalities of the fitness tracker. Bluetooth
 and a Wi-Fi module for a mobile connection were considered within the original project
 scope, but were also omitted due to complexity and time constraints. Furthermore, processing
 of the heart rate sensor data to detect different activity levels and alert the user of potential
 health risks was originally included in the project scope. This was also excluded from the
 final design since the primary focus of the design shifted to the development of the
 pedometer algorithm and associated processing of the accelerometer sensor data. Moreover,
 analysis of expected and healthy heart rates is dependent on the individual and would require
 additional input from the user.

 1

 3.0 Final Design
 The hardware components used in this project are listed in Appendix A. Additionally, an
 architecture diagram is shown in Figure 1 to show the connectivity between components and
 user input into the system. The following sections describe the main functionalities of the
 final prototype and how they were implemented. The full code for the prototype is available
 at https://github.com/avelynkwong/MIE438-Fitbit , and a video demo can be viewed at
 https://play.library.utoronto.ca/watch/9e548edfaa146d6679854729a9d379d0 .

 Figure 1. Architecture Diagram for Fitness Tracker

 3.1 Hardware Components and Physical Design
 The ESP32 feather board is selected as the microcontroller for the fitness tracker. This is a
 suitable choice since its built-in features allow for prioritization of software development and
 algorithm optimization over hardware integration challenges.

 The sensors used are also complementary to the choice of microcontroller and the fitness
 tracker application. The heart rate sensor and accelerometer can be powered using the 3V
 output of the ESP32, and can easily communicate to the microcontroller over the I2C
 protocol at a speed that appropriately captures the desired data from the user. The heart rate
 sensor is used to generate BPM data, and the accelerometer is used to track steps. Both values
 are displayed on the microcontroller’s built-in LCD, which acts as the screen for the fitness
 tracker. The microcontroller also possesses a built-in LED that is used to specify different

 2

https://github.com/avelynkwong/MIE438-Fitbit
https://play.library.utoronto.ca/watch/9e548edfaa146d6679854729a9d379d0

 activity states. This is described in detail in Section 4.3. Lastly, a speaker is included to
 provide audio output and notify the user on progress or completion of step-associated goals.

 To hold all the components, an enclosure is 3D-printed and strapped to the user’s arm using
 an adjustable wrist strap. A battery is also used to wirelessly power the microcontroller and
 sensors. The battery status is also indicated on the LCD to inform the user when they need to
 recharge the fitness tracker.

 3.2 Pedometer Algorithm
 To detect user steps and display the step count on the fitness tracker, a pedometer was
 developed in code. Since the fitness tracker is worn on the user’s wrist, the detection of steps
 is performed by tracking the swinging motion of the arm that is associated with taking steps.
 Based on the orientation of the accelerometer on the user’s wrist, the acceleration magnitude
 in the x-y plane was calculated using the following formula:

 𝑎𝑐𝑐𝑒 𝑙
 𝑥𝑦

= 𝑎𝑐𝑐𝑒 𝑙
 𝑥

 2 + 𝑎𝑐𝑐𝑒 𝑙
 𝑦

 2

 To filter out the high frequency noise on the accelerometer readings, a moving average was
 implemented using a queue/rolling buffer as described in Section 4.3. The averaged
 acceleration readings follow a sinusoidal pattern, since acceleration increases to a maximum
 when the user’s arm is mid-swing, and decreases to 0 when the arm begins changing
 direction. To convert this output into a discrete number of steps, the peaks in acceleration are
 detected using an acceleration threshold. This is set to 11.2 m/s 2 based on testing results.
 Once the acceleration values transition from below the threshold to above, the number of
 steps are incremented and the boolean variable isBelowThresh is set to False. This boolean is
 set back to True when the values drop below the threshold. This ensures that multiple steps
 are not being registered if the acceleration exceeds the threshold for numerous successive
 recorded values. The use of a moving average also helps smooth out the output acceleration
 signal and prevent accidental step increments.

 4.0 Course Concept Integration
 The course concepts that were applied in the design of the fitness tracker include the use of
 I2C communication, serial peripheral interface, state machines and sensor data processing
 techniques.

 4.1 I2C communication
 The accelerometer and heart rate sensor both use the I2C (Inter-Integrated-Circuit Bus)
 protocol to communicate with the ESP32. The I2C protocol is a serial standard, meaning that
 a single pin sends one bit at a time sequentially. It uses a two-wire interface, sending data
 over the SDA line and clock time over the SCL line. Our device uses a single master device,

 3

 the ESP32-S3 microcontroller, and two slave devices, the accelerometer and heart rate sensor.
 The communication process for the single master mode is as follows:

 Step General process Fitness tracker

 1 Master sends a START
 condition and addresses
 the target slave.

 The master device is the ESP32-S3 microcontroller,
 which will place the address of either the
 accelerometer or the heart rate sensor on the bus.

 2 All slave devices monitor
 the bus for their address.

 The accelerometer and the heart rate sensor are both
 monitoring the bus for their address.

 3 Handshaking occurs and
 communication starts

 The accelerometer or heart rate sensor would send
 data to the ESP32-S3 microcontroller.

 The ESP32-S3 microcontroller can support standard-mode and fast-mode clock rates, which
 corresponds to a range of 100KHz to 400KHz [2]. The higher the clock rate, the faster data
 can be transmitted between devices on the I2C bus. When devices are connected to the same
 I2C bus, they must operate at a common clock rate to ensure synchronized and reliable
 communication. The MPU6050 accelerometer and the MAX30102 heart rate sensor both
 have a clock rate of 400kHz, therefore the devices can have synchronized and reliable
 communication with the ESP32-S3 [3][4].

 4.2 Finite State Machines
 In the context of the fitness tracker, the utilization of Finite State Machines (FSMs) manages
 the dynamic behavior and transition of the different states based on user interaction.
 Specifically, predefined states are distinguished by varying levels of physical activity
 detected through accelerometer readings. These incorporate current context into the
 functionality of the device.

 As discussed in lecture, state transitions are governed by specific conditions or actions that
 the user wearing the fitness tracker experiences, such as achieving a step count goal or
 undergoing changes in physical activity intensity. The current design uses the accelerometer’s
 data to inform the microcontroller of different activity levels (low, moderate, or high), and
 each state triggers a different payload in the form of LED color changes on the
 microcontroller board. In addition, there is a “done” state that indicates that the step goal has
 been reached, which is followed by a short “victory” sound and the LED turning green. The
 table below summarizes the states in detail:

 State Condition Payload
 Effect

 Description

 DONE n_steps >= Green Step goal has been achieved. The

 4

 STEP_GOAL LED,
 Victory
 Sound

 NeoPixel LED pulses green with a
 victory sound, symbolizing the
 completion of the daily activity
 goal.

 ACTIVITY_
 LOW

 accelAvgMagnitude <
 LOWER_ACTIVITY_T
 HRESH

 Red
 LED

 Low level of physical activity. The
 NeoPixel LED pulses red,
 indicating a relatively sedentary
 state or very light activity.

 MODERATE LOWER_ACTIVITY_T
 HRESH <=
 accelAvgMagnitude <
 UPPER_ACTIVITY_TH
 RESH

 Purple
 LED

 Moderate physical activity. The
 NeoPixel LED pulses purple,
 denoting a healthy, moderate level
 of movement, such as walking or
 light jogging.

 ACTIVITY_
 HIGH

 accelAvgMagnitude >=
 UPPER_ACTIVITY_TH
 RESH

 Blue
 LED

 High level of physical activity.
 The NeoPixel LED pulses blue,
 indicating vigorous activity or
 exercise that significantly
 increases heart rate and
 movement.

 This implementation of FSM incorporates the concept of state minimization and efficient
 transition management. For instance, the victory sound and the green LED represent a
 combined payload action that could have otherwise been two different states. Moreover, by
 structuring the code to reflect a clear set of states and transitions, the fitness tracker output is
 organized in a way that is interactive with the user and can assist them with intuitively
 understanding its functionality.

 4.3 Sensor Data Processing
 In order to interface with the various sensors used by the fitness tracker, a series of processing
 steps were required to integrate the sensor-generated values into the overall program.

 Firstly, to create a reliable pedometer for measuring steps, the acceleration values generated
 by the MPU-6050 sensor were required. In a preliminary test, the accelerometer was strapped
 onto a user’s arm and the arm movements associated with walking and running were
 simulated. Plotting the accelerometer readings during this process revealed that the sensor
 readings were very sensitive and produced a noisy/spiky output rather than a smooth
 sinusoidal output that is desired for pedometer calculations. To mitigate this noise, a moving
 average was implemented as a form of low-pass filter. This involves entering the
 instantaneous acceleration values into a queue of fixed size, and calculating the effective
 sensor readings as the average of the values in the queue. Each time a new acceleration value
 is enqueued, the oldest acceleration value is dequeued. Using a queue size of 10, the
 magnitude of acceleration in the XY plane followed a much smoother sinusoidal output (see

 5

 figures below) that could be feasibly used for measuring steps through peak detection. The
 algorithm for the pedometer is described in detail in Section 3.2. The same moving average
 can also be implemented for the heart rate sensor. However, generation of BPM values is
 affected by how frequently the checkForBeat() function is called in the main loop of the
 program (more detail on this in Section 5.0). It was determined through testing that
 integration of the moving average added delays that resulted in incomplete detection of all
 beats, leading to inaccuracies in the calculated BPM values. Since it is less essential to have
 very stable BPM readings, the moving average is not incorporated for processing the heart
 rate sensor values.

 Figure 2. Acceleration without Low-Pass Filter

 Figure 3. Acceleration with Low-Pass Filter

 Beyond smoothing out noisy accelerometer readings, a method to convert the analog
 acceleration values into a peak/no-peak state to measure discrete steps is required. Since the
 accelerometer signal is only used to increment the step count and does not lead to any sort of
 control output, small inaccuracies in the exact times a step is registered can be tolerated.
 Thus, a simple comparator is implemented in software. This involves setting a threshold
 above which a peak in acceleration is detected, corresponding to a single step taken.

 4.4 Code Structure
 The main logic for the fitness tracker was programmed in C++. Most of the code was
 structured to prioritize readability rather than implementing various low-level optimization
 techniques, since it was not necessary to create an extremely efficient program with minimal
 time delays for the purposes of the prototype. However, certain code practices discussed in
 class were still incorporated into the program. For example, code that was executed

 6

 regardless of any calculated system state was implemented as a series of inline
 functions/macros within the main loop. This results in less clean code but reduces overhead
 that would otherwise be introduced by defining numerous functions and calling them from
 within the loop.

 5.0 Design and Build of Prototype
 The enclosure and the layout of the electronic components were modeled in CAD, and then
 assembled within the 3D printed enclosure, as shown in Figure 4.

 Figure 4. Layout of components (left), and parts assembled in enclosure (right)

 The user interface of the pedometer displays the user’s BPM, their step count and the current
 battery level, as shown in Figure 5.

 Figure 5. Physical Build of Prototype

 7

 6.0 Testing
 The majority of the testing for this design was centered around determining how to reliably
 leverage the values produced from the accelerometer and heart rate sensor to provide feasible
 fitness tracker functionality, since the hardware integration was relatively straightforward.

 Firstly, to test the accelerometer, the raw x, y, and z accelerations were plotted while a team
 member held the accelerometer and swung their arm in a typical walking motion. This
 allowed for visualization of the acceleration values and determination of which axes were
 relevant for detecting arm motion. The acceleration in the z-axis measured accelerations in
 the plane perpendicular to arm movement, so this was omitted from the sensor data used to
 predict steps. Furthermore, it was shown from testing that the accelerations were highly noisy
 and difficult to use without some form of data processing. Thus, a moving average was
 implemented (as described in Section 4.4), which provided a much smoother sinusoidal
 output. To detect peaks in the sinusoid (corresponding to steps), an upper threshold was
 determined from plotting of x-y acceleration magnitude during physical testing. This
 approach was proven to be quite reliable in measuring steps.

 Next, we tested the heart rate sensor to ensure that it could accurately capture and generate
 BPM information. Testing the heart rate sensor both in isolation and within the main program
 with other logic revealed an interesting bug—the heart rate sensor logic produced much
 lower and likely incorrect values when executed in the main program. After analyzing the
 root cause of the error, it was evident that the heart rate sensor calculates BPM based on the
 time passed between successive beats, which are detected using a checkForBeat() function
 provided by the heart rate sensor library. This works fine when the heart rate sensor logic is
 executed individually in a loop with minimal delays. However, once additional delays from
 other logic and sensor processing steps are introduced into the loop, the checkForBeat()
 function is executed less rapidly and some heartbeats remain undetected. To solve this issue,
 a polling loop was included that runs the checkForBeat() function multiple times
 consecutively, such that adjacent heart rates could be detected and used to update the BPM.

 7.0 Challenges and Future Work
 There were multiple challenges encountered throughout the design process. Some of these
 challenges were addressed directly in a manner that preserved the basic functionality of the
 prototype, and others were omitted in the prototype and left for future iterations of the design.
 These challenges, as well as suggestions for improvement, are detailed in the following
 sections.

 7.1 Pedometer
 The implemented pedometer algorithm uses acceleration magnitude in the x-y plane collected
 from the accelerometer when the user swings their arms. This algorithm is quite simple and

 8

 uses an average acceleration and a comparator to detect if a step has been taken. However,
 the data collected by the accelerometer is highly dependent on the orientation of the
 accelerometer. It was found through testing that if the user rotates their wrist substantially
 while walking/running, this could result in incomplete or inaccurate detection of steps. To
 improve the reliability of the pedometer algorithm, integration of the rotational data collected
 from the accelerometer could be used to adjust for rotation and dictate which of the 3-axis
 accelerations should be used in the pedometer calculation at any given moment.

 Furthermore, the use of a single threshold for detection of steps may not be robust to different
 individuals and/or different levels of activity (the peaks in detected acceleration may differ).
 A more robust algorithm could involve detecting the rising and falling of the output signal for
 a certain period of time, leading to a more reliable indicator of step progression, regardless of
 absolute acceleration values. Another possible method of creating a highly accurate and
 generalizable pedometer algorithm would be to train a machine learning model on sequential
 accelerometer readings, allowing for analysis of the user’s gait and incrementation of steps.
 However, this introduces significant computational cost and data collection requirements, and
 cannot be feasibly executed on the microcontroller selected for the scale of this project.

 7.2 Heart Rate Sensor
 The MAX30102 heart rate module used in this design relies on polling and fast execution
 within a loop to collect user data. However, the supplementary code for other sensors and
 logic adds timing delays to the loop resulting in occasional detection errors. To correct this,
 the implementation of interrupts was considered, but ultimately omitted due to time
 constraints and to avoid a set of complicated logic for execution. Currently, the heart rate
 sensor library is being used directly and contains logic for checking for heartbeats and
 computing BPM based on IR values. Modifying this logic to incorporate interrupts would
 require substantial time and testing, and it is possible that the execution of complex logic for
 determining BPM could lead to a locked system if multiple interrupts pile up. Nonetheless,
 the use of interrupts should be explored for future design iterations to ensure that each
 detected heartbeat is factored into the overall BPM, leading to more accurate and timely
 calculations of heart rate.

 7.3 Battery Selection
 The battery chosen to power the ESP32 was ordered from Amazon. The team ran into issues
 powering the device during our initial tests. We discovered that the positive and negative
 wires in the battery connector were opposite to the positive and negative terminals of the
 ESP32 connector. We learned that Adafruit produces proprietary batteries and connectors that
 have the correct orientation to be used with the ESP32, and it is a common issue for Amazon
 batteries to have the opposite wire configuration. To resolve this issue, we carefully removed
 the crimps from the Amazon battery connector and switched them into the correct positions.
 This allowed the positive end of the wire to connect to the positive terminal on the ESP32,
 and the negative end of the wire to connect to the negative terminal. After this change, the

 9

 fitness tracker was able to be powered by the battery. In the future, we would use Adafruit’s
 proprietary batteries, or ensure that the battery we are sourcing has wires in the correct
 configuration prior to testing.

 7.4 User Interaction
 User interaction is an integral part of any fitness tracker. For future iterations of the design,
 we could revisit the decision to exclude capacitive touch and wireless connectivity,
 evaluating how these features could enhance the user experience by facilitating data
 synchronization, bluetooth connection to smartphones, and enabling interactive features. For
 example, haptic sensors can be incorporated to enable different user-defined actions such as
 resetting the steps, playing music and more. Additionally, the step goal is currently hardcoded
 into the program. Being able to accept user input and adjust the goal based on the individual
 would be a very useful feature to implement in the future.

 8.0 Conclusion
 The primary goal of this project was to design and assemble a wireless wearable fitness
 tracker to track user steps and heart rate to help users commit to and reach their health and
 fitness goals. This was achieved using the ESP32 S3 feather board and its built-in features in
 addition to a heart rate sensor, accelerometer, and speaker. The built-in features of the ESP32
 enabled the prioritization of software development and algorithm implementation over
 hardware-related integration challenges, therefore enabling focus on the pedometer algorithm
 and a finite state machine to communicate activity levels and goal progress. Multiple
 challenges were encountered throughout the design process including the orientation
 sensitivity of the accelerometer, code delays impacting heart rate sensor readings, as well as
 the increased complexity and time constraints pertaining to the original project scope. These
 obstacles served as great learning experiences and a reminder of the nuances associated with
 developing embedded systems.

 In essence, the prototype built for this project served as a strong baseline for future iterations
 of the design. Further developments may include a more robust pedometer algorithm that
 incorporates the rising and falling pattern of the output signal, and the use of interrupts or
 higher-grade hardware to enable more reliable sensor readings and reduce timing delays.
 Additionally, multiple features could be integrated into the design to improve user interaction
 and personalization.

 10

 9.0 References
 [1] Lindberg, S. (n.d.). How Many Steps Do I Need a Day? . Healthline.
 https://www.healthline.com/health/how-many-steps-a-day#to-maintain-fitness

 [2] “Inter-Integrated Circuit (I2C) - ESP32 - — ESP-IDF Programming Guide v5.2.1
 documentation.”
 https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html
 #:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400K
 Hz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20f
 requency%20accurate .

 [3] Maxim Integrated, MAX30102 High-Sensitivity pulse oximeter and Heart-Rate sensor for
 wearable health. 2018. [Online]. Available:
 https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf

 [4] InvenSense Inc., “MPU-6000 and MPU-6050 Register map and descriptions,”
 RM-MPU-6000A-00, Aug. 2013. [Online]. Available:
 https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

 11

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2c.html#:~:text=ESP32%20supports%20both%20I2C%20Standard,to%20100KHz%20and%20400KHz%20respectively.&text=The%20frequency%20of%20SCL%20is,to%20make%20the%20frequency%20accurate
https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf

 Appendix A: Hardware Components
 Table A.1 below details the hardware design choices implemented for this project as well as
 the component function and reasoning with specific reference to the fitness tracker design.

 Table A.1 Hardware Components

 Picture Component Reasoning

 Microcontroller Unit
 (MCU), ESP32-S3

 Processing unit for executing fitness tracker
 logic. Also contains an LCD screen and
 LED for multimodal data output

 Heart Rate
 Sensor/Pulse Sensor,
 MAX30102

 Used to measure the user’s BPM.

 Accelerometer and
 Gyroscope,
 MPU-6050

 Used to create a pedometer to track steps.

 Battery, 3.7V Li-Po
 battery, 500mAh

 Used to wirelessly power the
 microcontroller.

 USB-C Power
 Connection

 Used to upload code to the microcontroller.

 3D-Printed
 Enclosure

 Used to house all the hardware components.

 Wrist strap Used to secure the enclosure and
 components to the user’s wrist.

 Speaker Used to produce audible notifications for
 when the user has made progress or reached
 their fitness goal.

 12

