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Abstract

The challenge of enabling robots to navigate efficiently in spaces shared with humans is a
multifaceted problem. Many current approaches consider prediction and planning in a
coupled manner, allowing for a holistic view within a Partially Observable Markov Decision
Process (POMDP). The robot agent would consider predictions such as human trajectories to
ensure Cooperative Collision Avoidance (CCA) between robots and humans, highlighting
the importance of social norms in robotic navigation. We advance this domain in this paper
by replicating a leading trajectory prediction method using Spatial Occupancy Grid Maps
(SOGMs) and a Convolutional Neural Network (CNN) specialized for point clouds to
forecast human movements up to four seconds ahead. We also leverage NVIDIA's
Omniverse Isaac Gym to develop a training environment for a Jackal robot with the
Proximal Policy Optimization (PPO) algorithm, enhanced by Eureka, a novel reward tuning
method using Large Language Models (LLMs). This integration facilitates zero-shot learning
for navigation policies that consider dynamic social behaviors. Key results indicate a
significant leap in the robot's ability to predict human trajectories and navigate in dynamic
social environments. The use of Eureka for reward tuning resulted in a refined policy that
outperformed the human-crafted policy by 50.7%, improving navigation success and
efficiency in dynamic obstacle avoidance. Our conclusion emphasizes the efficacy of
integrating deep reinforcement learning with trajectory prediction and LLM-based reward
tuning in creating more adaptable, socially aware navigation systems for mobile robots.
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1 Introduction

In the evolving field of robotics, the integration of autonomous mobile robots into our daily

lives presents a frontier of technological advancement and innovation. However, to achieve

full autonomy within human-centric environments, robots must not require human assistance

in achieving their tasks. This poses a gap within the current autonomous social navigation

methods in mobile robots: seamless navigation with prediction of human intent and

trajectories [1]. For example, people can anticipate the intent of another to either shift their

trajectories or slow down to find the most optimal action/path to account for the deviation in

their original plan. The primary goal of this thesis is to develop a mobile robot social

navigation system capable of predicting and adapting to human intent and trajectories,

achieving seamless navigation in human-centric environments without human intervention.

Current advances within the autonomous robotics field aim to achieve this behavior of

seamless navigation for the surveillance, exploration, and social inclusion of mobile robots

[2].

One area of interest for trajectory prediction is an extensive series of work that first

proposed the self-supervised automated annotation of LiDAR point cloud map using

Ray-tracing techniques [3]. The study integrates a novel convolutional network, KPConv [4]

for extracting point clouds in the observed LiDAR map for segmentation and scene context

understanding. This method differs from the traditional method of object detection and

tracking, eliminating the need for manual labeling of images, relative to the concept of

adaptive and self-supervised learning of autonomous systems. In addition to the trajectory

prediction and within the context of this thesis, we will explore a navigation system that can

unify different uncertainty cues, contextual information, and multi-modal data [5]. This

research is significant for its potential to drastically improve the adaptability and safety of
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autonomous mobile robots in dynamic environments, making a substantial leap toward their

seamless integration into society.

By including Deep Reinforcement Learning (DRL) in navigation, we can address a

critical gap of traditional planning methods that lack robustness in dynamic and unpredictable

environments. Traditional planners, often reliant on static models and predefined pathways,

struggle to adapt to the real-time complexities of human movement and behavior. These

systems can be faulty in scenarios where human actions are unpredictable or when

environmental variables change unexpectedly (e.g., a crowded marketplace, sudden

movements in public spaces, etc.), leading to inefficient path planning and potential safety

risks. Therefore, we developed a simulation environment within the state-of-the-art NVIDIA

Omniverse Isaac Gym [6]. This environment is specifically designed to parallelize the

training process, significantly reducing the amount of time typically required for training

sophisticated DRL policies.

Furthermore, we have leveraged other state-of-the-art advancements within the field

of Large Language Models to refine the trained policy with human-level reward design [7].

Also known as “Eureka”, it distinguishes itself through its ability to generate and refine

reward functions automatically, without needing task-specific prompting or predefined

reward templates. It achieves this by using evolutionary optimization over reward code

generated through the zero-shot capabilities of LLMs. A key feature we want to focus on

utilizing is the “gradient-free in-context learning approach” to Reinforcement Learning from

Human Feedback (RLHF). The pipeline will allow for the specification and refinement of

reward functions based on human language prompts, translating these inputs into continuous

refinement of the training policy. This capability is optimal for specifying different social

norms and expectations in human-robot interactions, ensuring that the robot’s behavior aligns

with human preferences and societal standards.
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The purpose of this thesis is to address the identified research gap of current

autonomous systems' inability to dynamically adapt to unpredictable human behavior and

environmental changes in real time. The core contributions of this study encompass 1) the

application of a self-supervised, Ray-tracing-based technique for LiDAR point cloud

annotation, facilitating trajectory prediction capabilities, and 2) the employment of a novel

reinforcement learning framework that leverages the zero-shot ability of Large Language

Models for dynamic, human-centered reward tuning, setting a new standard for robot

navigation in human environments. The future works section will also go over some

limitations and how the RL navigation pipeline can complement our trajectory prediction

base module for an end-to-end prediction and planning method.
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2 Literature Review

In the domain of social navigation, environments are shared by multiple autonomous agents,

each tasked with its navigational objectives. These agents, which can represent individuals or

groups, operate within a shared space, where their movement decisions are made

independently. Despite the absence of direct communication between agents, there is an

implicit interaction driven by mutual observation. This interaction necessitates the

anticipation of others' movements and requires continuous adaptation to the dynamically

changing environment [8].

Formally defined, social navigation involves several agents, greater than one, each

positioned within a specific configuration in space at any given time . Their goal is to

navigate to predetermined destinations while ensuring they do not collide with static

obstacles or intrude upon the safe space defined among moving agents, thereby adhering to

socially accepted norms. During the planning phase, an agent formulates a path

, from its current position to its destination. This path is determined by

solving an optimization problem that minimizes a cost function of the form:

This cost function [8] comprises an individual component, related to the agent's

navigation preferences and a social component, that incorporates considerations of
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personal space and anticipates the future movements of other agents

within the environment. It is crucial to note that agents lack access to the specific

navigational intentions and parameters of their counterparts. This setup, characterized by

individual decision-making in the presence of others without explicit communication,

highlights the essence of social navigation.

The social robot navigation problem can be defined in two separate classes:

considering prediction and navigation in both coupled or decoupled ways [8]. Specifically,

the decoupled approach views prediction inputs as distinct information streams used to fulfill

robot objectives, while the coupled method integrates agent predictions directly into the

ego-robot's decision-making process.

2.1 Decoupled Prediction and Planning methods

A few trends that can be identified for decoupled methods are: 1) treating humans as

dynamic, non-reactive obstacles; 2) navigation with interaction-agnostic models for

uncertainties; and 3) navigation with hand-crafted social norms.

2.1.1 Dynamic, Non-responsive Obstacles

Early initiatives like RHINO [9] and MINERVA [10], pioneering robotic systems deployed

in museums in Germany and the USA during the late '90s, marked significant advancements

in robotic tour guide applications by interacting with human visitors and handling numerous

guide requests. These robots, alongside successors like Rackham [11] and Robox [12],

demonstrated autonomous navigation and service capabilities, further encouraged by

competitions like the AAAI Mobile Robot Challenge [13]. Despite their achievements, these

systems ignored the human element, treating humans as static obstacles, without considering

their social behaviors or interactions. This approach, while effective for collision avoidance,
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led to less intuitive robot behaviors, often disrupting human pathways. This highlights the

need for incorporating models that account for human behavior and uncertainty in navigating

crowded environments.

2.1.2 Probabilistic Deduction of Uncertainties

The initial deployment of robots in crowded social settings highlighted the need for

improved navigation strategies that account for the unpredictable nature of such

environments. This led to a new focus on developing methods to navigate uncertainty.

Innovations include a control framework that uses predictive uncertainty in decision-making

[14], and Thompson et al.'s probabilistic human motion model aimed at better motion

planning [15]. Although these approaches advanced the modeling of uncertainty, they

generally viewed humans as solitary, non-interactive figures, neglecting the dynamics of

group movement. This often led to an overestimation of potential collisions, contributing to

what's known as the "freezing robot problem," where robots halt, unable to identify safe

paths.

2.1.3 Formulated Social Norms

The push for social awareness in robot navigation has led to the development of motion

planning frameworks that adhere to social norms and proxemics, aiming to increase human

comfort. Inspired by proxemics theory [16], some research focuses on creating motion plans

that respect personal space. Additionally, there's a trend towards learning social navigation

cues from human behavior. Luber et al. used navigation prototypes learned from

demonstrations to create dynamic cost maps that reflect both tangible and perceived aspects

of human movement [17]. Techniques like Inverse Reinforcement Learning (IRL) have been

employed to infer human navigation goals and integrate them into robot path planning [18],

fostering more natural and human-like robot movement.
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2.2 Coupled Prediction and Planning Methods

In active research fields such as autonomous driving, robotics, and manipulation, robots must

be able to handle human encounters successfully to avoid unpleasant experiences.

Specifically, from experiences regarding safety from collisions to ease of navigation, various

challenging scenarios must be considered for the co-existence of robots and humans.

Moreover, human intentions must be known for predicting different safety hazards.

Therefore, knowledge of human intentions can be derived from future trajectories as an

anticipatory metric for robots to not disrupt the flow of public crowds [19]. This type of

coupled method is growing rapidly with various methods to implement social navigation

which can be split into four sectors: 1) dynamic obstacle-based; 2) Deep Reinforcement

Learning-based (DRL); 3) control-based optimizations and a newer field of 4) Language and

Vision-Language model-based

2.2.1 Dynamic Obstacle-Based

Dynamic obstacle-based methods often consider different objects within the surrounding

environments by tracking/isolating the region of interest to predict the obstacle trajectories

and plan to avoid them [20]. With an increasing interest in Recurrent Neural Networks

(RNNs) for sequential prediction, Trajectron++ is a novel method for jointly predicting the

trajectories of all dynamic agents within the observed scene through graph-structured RNNs

[21]. Methods like STG-DAT [22] implement a Generative Adversarial Network (GAN) to

simulate possible futures and generate trajectories based on the relation within the graph

network and the probability that it is real [23].
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Figure 1: Trajectron++’s directed spatiotemporal graph and network architecture [21]

Some approaches use Occupancy Grid Map predictions (OGMs) to predict a dynamic

risk density within a risk map that is computed from the occupancy and velocity field from

LiDAR scene scans [24]. Relatively, there has been a promising extension from this work to

use Spatiotemporal Occupancy Grid Map predictions (SOGMs) instead of OGMs to use

space and time within OGMs to utilize annotated 3D LiDAR points for robot navigation [25].

This study implements an extensive pipeline that allows for the mobile robot to improve its

navigational performance over time through self-supervised learning. By treating the

observed LiDAR point clouds as a four-category entity, the network can predict future

SOGMs of dynamic agents and organically avoid collisions.
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Figure 2: Left; Inefficient Social Navigation without predictions, Right; Efficient Social
Navigation with SOGM predictions [25]

2.2.2 Deep Reinforcement Learning-Based

DRL methods focus on learning navigation policies that maximize the robot’s ability to be

socially cooperative [26], [27], [28]. More specifically, the robot seeks to maximize the

designed reward function of avoiding crowds by minimizing the possibility of collisions.

There also has been work to implement attention-based-RL or LSTM-RL networks to

introduce an arbitrary number of surrounding agents [29]. Some common DRL algorithms for

mobile robot navigation are Deep/Double Deep Q-Network (DQN/DDQN) [30], Proximal

Policy Optimization (PPO) [31], and Soft Actor Critic (SAC) [32] which all have their

strengths and weaknesses when it comes to training an optimal navigation policy. In terms of

continuous actions, PPO is a good benchmark to start from due to its simple yet efficient

nature in converging a variety of advanced tasks. Successor to the Trust Region Policy

Optimization (TRPO) algorithm, PPO is a policy gradient method that revolves around small

incremental policy updates through the ratio of old and new policy updates. TRPO’s

Conservative Policy Iteration (CPI) is maximized with the surrogate objective of:

Where is a stochastic policy and an advantage estimator function at timestep ,

with indicating the empirical average over a finite batch of samples. To prevent

excessive policy updates, the probability ratio must be clipped to penalize ratios that move

away from one:

This removes the incentive for moving the outside of the interval of

where being a hyperparameter of 0.2, employs an objective that maintains exploration and
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exploitation of advantageous policies. Further modifications can be done to augment the

objective for general-purpose optimization which involves adding an entropy bonus

to the surrogate loss function or an advantage estimator:

Despite the advances within DRL algorithms and methods, most suffer from the

all-in-one nature of neural network policy deployment and can be difficult to troubleshoot

issues, tune, and interpret. Also, there are challenges regarding being only able to learn from

experience. If the encounter has never been learned, then the prediction of trajectories or

states would be divergent from the feasible future [33].

2.2.3 Control-Based

Control-based optimization focuses on obtaining the best possible action the robot can take

over a finite control horizon using simple velocity models. More recently, there have been

advancements in providing better models for social navigation purposes, from state-of-the-art

human trajectory prediction models such as Social-GAN [34] to Social-LSTM [22]. These

models combined with MPC have shown significant potential for real-world application in

terms of their ability to allow for a safer and predictable performance [35].

Figure 3: Social GAN’s Generator/Discriminator Architecture [23]
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2.2.4 Language and Vision-Language Model-Based

This emerging field leverages the advancements in Large Language Models (LLMs) and

Vision-Language Models (VLMs) for robotic navigation and planning through natural

language processing and visual understanding. Unlike traditional methods that rely on

explicit annotations and supervised learning, this approach utilizes pre-trained models

capable of interpreting complex, natural language instructions and visual cues without

requiring domain-specific fine-tuning or annotated datasets. An example of this is the

LM-Nav [36] by Shah et al, which integrates pre-trained navigation (ViNG), image-language

association (CLIP), and language modeling (GPT-3) technologies. This system demonstrates

the potential for robots to perform long-horizon navigation in complex environments based

on high-level, natural language commands. This approach not only simplifies the interface

for human-robot interaction but also enhances the robot's ability to generalize from vast,

unannotated data sources, thereby reducing the reliance on expensive, labor-intensive data

labeling processes.

Figure 4: LM-Nav [36] takes a set of raw observations from the surrounding environment in
visual form, devising a set of plans using LLM, VLM, and VNM. This setup allows
LM-Nav to effectively follow complex textual instructions using only visual data, without
the need for model fine-tuning.
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2.3 Social Navigation

Furthermore, to effectively achieve seamless navigation in social settings, specific challenges

must be defined: 1) Complexity of Human Behavior, 2) Heterogeneity and Stochasticity of

Human Behavior, and 3) Separation of Human Trajectory and Intention.

2.3.1 Complex Human Behavior

The first problem, understanding the complexities of human behaviors is a multi-faceted

problem due to the variety of internal and external factors, such as personal intentions,

interactions with others, social norms, and the environmental context. Most of such factors

are not directly observable and must be inferred from often noisy perceptual cues of

contextual information [37]. In addition, depending on the approach used for prediction,

incorporating contextual cues such as current position or velocity becomes difficult [37].

Contextual information is essential in most state-of-the-art approaches such as planning

methods as they require detailed semantic information of their surroundings to predict the

future state of target agents [37]. Therefore, current methods pose limitations in effectively

specifying the present scenario for navigation.

2.3.2 Heterogeneity and Stochasticity of Human Behavior

The second problem of stochasticity within human behaviors is an area of active research to

propose a general model for predicting human behavior in all circumstances. By learning a

multi-task prediction model on presented trajectories [38], a study was able to achieve an

adaptable predictive system for human-robot collaboration systems. Furthermore, the latter

problems allow for a more specific scope of combining trajectory and intention prediction to

encapsulate all important aspects of human behavior.
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2.3.3 Human Trajectory and Intention

The combination of human intention and trajectory to develop a flexible predictive system is

also described in the previously mentioned study [38]. However, the approach is still limited

to user-specified tasks and is unable to learn and adapt on its own. Therefore, by adjusting

similar work in models that couple both trajectory and intention prediction, it could be

implemented into an end-to-end mobile robot navigational pipeline that could adapt to

different environments [39]. In essence, addressing the three challenges will contribute to

improving contextual understanding of dynamic environments and their semantics [37]. This

will significantly increase the adaptability of autonomous robots and vehicles in diverse

scenarios, including accidents and unexpected human behaviors.

2.4 Conclusion of Literature Review

Moving forward, the limitations associated with dynamic obstacles and RL methods will be

considered to improve mobile robot navigation in social environments. A notable limitation

of dynamic obstacles lies in the inherent unpredictability and complexity of their movements

within social settings, which are significant challenges for current navigation systems in

accurately forecasting trajectories and adjusting paths in real time. Furthermore, RL

methods, while effective in learning complex behaviors, often struggle with long training

times, sample inefficiency, and difficulty in generalizing learned policies across varied and

unpredictable environments. These challenges are particularly pronounced in dynamic social

settings, where human behavior introduces a high degree of variability. These limitations

will be explicitly addressed in the next sections, through the exploration of the current

pipelines of SOGM predictions and RL navigation policy training with Large Language

Models, aiming for advancements in the adaptability and efficiency of autonomous social

robot navigation strategies.
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3 Methodology

The main objective of this thesis is to provide a benchmark using a state-of-the-art trajectory

prediction module [25] and to develop a simulation environment in Isaac Gym with LLM

reward tuning. In the first half of this section, we will go over the extensive benchmarking

from software to hardware done for the trajectory prediction module based on a series of

foundational studies for using SOGMs. In the second half, we will delve into the details of

implementing Omniverse Isaac Gym for mobile robot navigation tasks and the LLM reward

function tuner, Eureka [40]. A sub-optimal model was produced for testing the trajectory

prediction module using an NVIDIA GeForce RTX 3060. Isaac Gym policies were trained

using an NVIDIA GeForce RTX 3070 TI with an average training time of 2-3 hrs for an

optimal policy.

3.1 Occupancy Grid Maps for Trajectory Prediction

Trajectory prediction using occupancy grid maps function by predicting the probability of

occupancy distribution over a 2D grid at individual future time steps. This is limited in terms

of surrounding data interpretation due to the latent domain being constrained within a 2D

environment. To interpret and transfer useful 3D features for OGM trajectory prediction, we

can introduce both spatial and temporal patterns within the OGMs by stacking each 2D grid

map to generate 3D SOGMs. This method is advantageous for multimodal predictions due to

its point-centric background of using LiDAR point cloud segmentation instead of specific

objects, where the critical scene data is largely dependent on correctly identifying certain

objects. By treating the robot’s environment as a single entity, the robot can learn better

navigational decisions even with uncertain environment states using the predicted

trajectories of dynamic obstacles.
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To benchmark this method, the research detailed in papers [3], [25], [41] will be

outlined to explain the implementation of Spatio-temporal Occupancy Grid Maps (SOGMs)

for trajectory prediction within autonomous indoor navigation systems, utilizing unstructured

3D point clouds. Central to this approach is the application of Kernel Point Convolution

(KPConv) [4], a technique designed to directly process point cloud data without the need for

pre-structuring it into a grid format. This method enhances spatial data applicability by

integrating Iterative Closest Point (ICP)-based Simultaneous Localization and Mapping

(SLAM) algorithms for the creation of initial occupancy maps. These maps are then refined

and interpreted through automated annotation processes, incorporating mathematical

morphology for data enhancement and a triaging system for semantic filtering. Such filtering

prioritizes computational efforts toward analyzing permanent structures and the ground,

crucial for accurate localization and efficient path planning in hardware implementations.

3.1.1 Dataset

The network is trained on cumulative data from three hand-crafted sources; UTIn3D-Hall,

UTIn3D-Atrium, and Sim 50% data which are all open-sourced on their GitHub repository

[42]. UTIn3D-Hall has over 60,000 frames with over 6000 annotated points with 69% of the

frames containing dynamic points. UTIn3D-Atrium has over 70,000 frames with over 7000

annotated points with 37.7% of the frames containing dynamic points. The simulated data

has not been explicitly mentioned but exists on their old repository as mentioned.
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Figure 5: Different annotated frames of the UTIn3D dataset, robot trajectories are in green,
and dynamic points are in red [25].

3.1.2 Data Preprocessing

Figure 6: Each of UTIn3D Annotated LiDAR frames are saved and subsampled to a 2D Grid
which are later stacked according to their timestamps to create 3D-grid SOGMs [25].

The architecture first requires the navigational environment to be mapped completely to

optimize for segmentation and localization signals during runs. This is achieved through a

raytracing-based SLAM with loop closures using the Open3D library [43]. The two main

UTIn3D datasets are comprised of lidar frames, trajectories computed, and annotations

which allows the bypass of reproducing initial mapping sessions and annotations. With the
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annotated input LiDAR frames, 2D point cloud structures are computed and saved for each

of the LiDAR frames that are subsampled and noise-filtered to a grid size of 3cm. During

training, the 2D structures of each frame are stacked into a 3D grid representation according

to their timestamps with augmentations. This is an SOGM structure of spatial resolution

= 12 cm and temporal resolution = 0.1 s. Finally, two of the three channels; 1)

Permanent and 2) Movables are merged for all timesteps of the SOGMs since they are static

which helps the network learn to complete partially seen static objects.

3.1.3 Kernel Point Convolution

The merged and annotated SOGMs in Figure 6, along with an array of other point cloud

features are fed into the Kernel Point Convolution Network for predicting point-wise labels

[4], shown in Figure 7. This step is crucial for providing ground truth data as the network

now provides ground truth signals for KPConv to predict point-wise labels for random

LiDAR frames during inference.

Figure 7: Kernel Point Convolution [4]; input points are not necessarily aligned with kernel
points with varying quantities. Therefore, each point feature of the input must be multiplied
by all the kernel weight matrices, concerning a correlation coefficient .
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Derived from a general definition of a point convolution similar to an image

convolution:

KPConv employs a unique kernel function , which operates on neighbor positions

within a 3D space defined by a radius . For any point , the kernel function is

defined as:

where are kernel points, are associated weight matrices, and is the

correlation between and , given by:

Here, is the influence distance of the kernel points. This method is distinguished by

its adaptability to the observable point density and the straightforward nature of its gradient

backpropagation, in contrast to more complex correlations like the Gaussian.

Figure 8: Top; KP-FCNN for point segmentation and labeling, Bottom; KP-CNN for
classification [44]
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3.1.4 Feed-Forward 3D-2D Network

Figure 9: Full 3D-2D Feed Forward architecture going from merged input LiDAR frames to
point-wise labels and SOGM trajectory predictions [25]

For the 3D-Backend, the specific architecture is the KP-FCNN as seen in Figure 8 which is a

fully convolutional network for segmentation. The 5-layer encoder convolutional blocks are

similar to bottleneck ResNet blocks and the decoder uses nearest upsampling to obtain the

final point-wise features. Skip links are also used to transfer features between intermediate

layers of both the encoder and decoder which also employ a unary convolution for

upsampling. This is particularly necessary for handling noise and disruptive points.

In the context of KPconv’s point-wise labels, by providing signals that allow more

specific point features to be passed down to the 2D part of the network, it aids in training the

network. The output is also used for both global planning and mapping in the pipeline. Along

with the ground truth SOGMs, the network input array also contains 0.3 seconds of raw

LiDAR frames that have been aligned and merged. Other than providing point-wise labels,

the 3D point features are passed to the 2D-front-end with a grid projection using the same

spatial resolution as the SOGM. Then, it creates the 2D feature map by averaging

features within cells of a grid. This map is processed by a U-Net architecture with three
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levels of two ResNet layers each, enhancing sparse information across the grid. The

enhanced feature map predicts the initial SOGM time step, followed by propagation through

blocks with two ResNet layers each, predicting subsequent SOGM time steps. The process

aims for predictions up to 4 seconds, totaling 41 time steps. Despite redundancy in

predictions for permanent and movable objects, this approach is maintained to improve class

interaction learning and spatial awareness.

The network’s loss function combines both the 3D and 2D layers. The total loss

function, , is defined as:

where , . is the standard cross-entropy loss used in the

original KPConv network, and is a binary cross-entropy loss applied to the layer of

the SOGM predictions:

where is the network logit at the pixel of the time-step layer in the SOGM,

is its corresponding label, and for binary cross-entropy. During inference, the

predicted future SOGMs are converted into risk maps that are decoupled into static and

dynamic risks where static risks are taken from the permanent and movable SOGM channels

and dynamic risks from the dynamic channel. The dynamic risks are diffused in time and

stacked into a single cost map with a single layer of static risks since it does not move. From

here, the Timed Elastic Band (TEB) path planner receives the costmap to finally navigate

the robot towards a goal avoiding dynamic/static risks.
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3.2 Omiverse Isaac Gym Simulator For DRL

As our scope is to implement the trajectory prediction module into a separate navigation

pipeline more suited for effective mobile robot social navigation using DRL, a simulator was

developed within the latest Omniverse Isaac Simulator’s built-in Gym environment utilizing

OpenAI’s Gym API and High-performance RL library; rl_games. Important features are

outlined:

● Simulator: Omniverse Isaac Gym Environment (OIGE) [45].

● RL Algorithm: Proximal Policy Optimization (PPO) [31].

● Observations: 2D scan, distance to goal, angle to goal, linear and angular velocity.

● Action Space: Clearpath Jackal’s [46] base linear and angular velocity.

● Task: Single-Robot waypoint navigation with dynamic/static obstacle avoidance

● Reward Function: Based on the difference between the previous and current

distance to the goal, the agent is penalized if the current distance is larger than the

previous distance. In addition, a minimum LiDAR depth threshold is specified to

penalize the agent if it detects any obstacles closer to that threshold. The agent is also

rewarded for reaching the goal and moving at all times without stopping.

3.2.1 Environment Design

In classic robotic simulators such as ROS, training a DRL policy requires heavy CPU usage.

In contrast, OIGE leverages GPUs for parallelizing the training process, significantly

accelerating DRL policy training. This capability allows OIGE to simulate a vast number of

environments in parallel as shown in Figure 10, offering a substantial throughput increase

over CPU-based simulations. The ability to sample a large number of environment states and

actions in parallel drastically reduces the time required to train complex policies.
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Figure 10: Left; Multiple training environments visualized in OIGE for waypoint navigation
with static obstacles. Right; waypoint (pink cube) navigation with dynamic obstacles as
moving spheres.

As for our Jackal robot, we mounted a 2D LiDAR sensor with 12 lasers for collecting

depth information, the max and min range of the scans are 1 m and 0.1 m respectively. The

short range of the 2D sensor is to ensure less noise while training but can be increased in the

future for different tasks. The environment is built to be highly customizable and provides a

significant baseline simulator for mobile robot navigation tasks.

Figure 11: Left; Clearpath Jackal UGV Mobile Robot in USD format, provided within
OIGE, wheel joints are configurable but the LiDAR sensor has been implemented from the
existing APIs within Omniverse. Right; Individual maze configuration for each environment
instance.
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3.2.2 Observation Space

Given an agent in a dynamic environment, the observation space at any time step can be

described as a multi-dimensional vector , which includes both scalar and vector

components representing the robot's sensory inputs and its state:

where:

● represents the -th distance reading from a 2D LiDAR scan, with

● is the scalar distance to the goal location.

● is the angle to the goal relative to the robot's heading.

● and are the robot's current linear and angular velocities, respectively.

3.2.2 Action Space

The action space is defined as the set of all possible actions the agent can take at any time

step , represented by :

where:

● is the desired linear velocity.

● is the desired angular velocity.

These actions directly influence the robot's movement and are selected based on the policy

being optimized.

3.2.3 Reward Function

The reward function evaluates the immediate reward received after

transitioning from state to state due to action , and is defined as:
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where:

● are weighting coefficients.

● is the indicator function, returning 1 if the condition is true, and 0 otherwise.

● and are the distances to the goal at times and , respectively.

3.2.4 PPO for Continuous Action Navigation

PPO seeks to fine-tune the policy of the Jackal robot, maximizing the expected

rewards over time by navigating towards a target while avoiding obstacles. With continuous

action space of linear and angular velocities, there is a nuanced approach to policy

optimization. As mentioned, PPO employs a specially designed objective function that

leverages a clipped surrogate objective which controls the magnitude of policy updates and

ensures smooth learning progress:

In this context:

● quantifies the ratio of the likelihoods under the new policy versus the old,

capturing how the policy's preference for an action at state evolves.

● represents an advantage function estimator for navigation, measuring the

relative benefit of taking action in state over the average. It incorporates

navigation-specific rewards and penalties, such as the importance of maintaining a
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safe distance from obstacles, the efficiency of path following, and the urgency of

reaching waypoints.

● is a critical hyperparameter that dictates the clipping threshold, moderating the

extent of policy updates to avoid destabilizing the learning process.

3.3 LLM Reward Function Tuning in OIGE

The Eureka framework, detailed in the Eureka paper [7], introduces a method for designing

reward functions using Large Language Models, such as GPT-4. As mentioned, this

approach leverages LLMs' capabilities for zero-shot generation and code writing to evolve

reward functions through evolutionary optimization, without requiring task-specific prompts

or predefined templates.

Figure 12: Eureka’s iterative pipeline of providing human-level reward functions via LLMs
[7]

Applied in Isaac Gym, Eureka significantly enhances the development of complex

skills in reinforcement learning (RL) tasks. It has proven to outperform expert-designed

rewards in 83% of tasks across 29 RL environments, leading to a 52% average improvement.
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Eureka also facilitates a novel method for reinforcement learning from human feedback

(RLHF) by integrating human inputs directly into reward tuning, improving both reward

quality and safety without model retraining. One notable application is training a simulated

Shadow Hand to perform pen-spinning tricks, demonstrating Eureka’s potential to advance

robotic control and manipulation through effective reward function design.

3.3.1 Eureka with Mobile Robot Navigation

Due to Eureka being implemented in an older version of Isaac Gym (Isaac Gym Preview 4)

[45], the repository [47] has been heavily modified to work with the new OIGE. The

proposed implementation is functional with a few technical limitations like speed and

automated evaluation which will be detailed in the limitations section. Figure 13 outlines the

modified Eureka pipeline according to our navigation task.

Figure 13: Modified visualizations according to how the navigation task is trained using
Eureka. Note that the initial task prompt is different and the LLM will initialize using this
starting point as seen in the reward mutation stage
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3.3.2 Reward Tuning Dynamic Obstacle Task

For the task of waypoint navigation with dynamic obstacles, we implemented an

environment shown in Figure 13, where spheres are treated as humans that move. Also, we

provide the hand-crafted reward function to Erueka for correlation calculation between

human-made and generated reward functions. Having a single executable code being output

from the LLM will allow it to propose a new and improved reward function from an existing

one based on textual feedback. This process iterates, taking the best reward from a previous

iteration to generate more samples. This iterative optimization of the reward function

continues until the chosen number of iterations is reached.

3.3.3 Evaluation and Integration

After undergoing multiple iterations of reward function tuning and improvement, the final

stage in the Eureka pipeline involves evaluating the optimized reward functions and

integrating them into the targeted RL environment for further testing and validation. This

ensures that the evolved reward functions not only theoretically improve performance but

also practically enhance the RL model's ability to learn and execute tasks more effectively.

For a deeper look into the final evaluation and integration process within the context of

mobile robot navigation, particularly focusing on navigating through dynamic obstacles:

● Performance Metrics: The final evaluation process involves testing against several

key performance metrics. These include a metric that is indicative of “success” in

task completion, efficiency (time or steps taken to complete the task), safety

(avoidance of obstacles or unsafe states), and generalization across varying

environmental conditions. This multi-metric assessment ensures that the reward

function promotes balanced and robust skill development.
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● Comparative Analysis: The evolved reward functions are compared against baseline

reward functions, including the initial human-designed rewards and possibly other

algorithmically generated rewards. This comparison highlights the relative

improvements and identifies areas where the evolved reward functions excel or

require further refinement.
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4 Results and Discussion

There are two parts to the experiments that have been conducted. The first was to train our

trajectory prediction model using the SOGM network which was tested on both the paper’s

Gazebo simulator and our real Clearpath Jackals. The second was training the Jackal on

waypoint navigation with Eureka for dynamic obstacles using our OIGE simulator.

4.1 SOGM Prediction Training

To validate the training pipeline, we trained a sub-optimal model by modifying our variable

batch size targeting = 1, averaging 8.5 k points per batch with 1000 epochs, learning rate

of 1e-2, momentum=0.98 and 500 steps per epoch with all other parameters being identical

to the proposed model. This qualitative analysis confirms the validity of the model due to the

general direction of the observable dynamic (red) predictions that align with the general path

of the person’s heading direction.

Figure 14: One training scenario result using sub-optimal training hyperparameters (due to
hardware constraints at the time) Left; ground truth future SOGMs for the simulated path of
humans (yellow), permanent walls (green), and movables (blue) produced using the stacked
2D features. Right; predictions made by the network for 4s into the future in (red) regions.
This is in the general direction of the left image.
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4.2 SOGM Network Simulation Experiments

The paper [25] also proposes a simulator that allows for visualization within a Gazebo

Environment with predictions available within Rviz. The initial simulation results indicated

that the model is unable to predict proper trajectories due to the sub-optimal model.

However, as seen in Figure 15, it displays potential for training with better hardware to

facilitate a prediction level similar to the paper.

Figure 15: Initial simulation experiment with the sub-optimal model, Left; Gazebo
environment involving dynamic humans walking around, Right; RVIZ visualization of the
segmentation and prediction, the red region on the cost map is where the model hypothesizes
that there are dynamic risks and trajectory predictions can be seen to be the yellow spot on
the map. Again, the model is sub-optimal which results in inaccurate predictions.

Comparatively, the ground-truth results were visualized in Figure 16 to indicate the

accuracy of the proposed dynamic obstacle prediction and trajectory planning. This showed

effective planning around each person’s trajectories.
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Figure 16: Left; TEB navigation with ground-truth SOGMs, previous timestep. Right;
Future timestep, the jackal already has trajectory risks within the cost map that TEB is trying
to minimize linearly. This allows the jackal to avoid the human naturally.

4.3 SOGM Network Hardware Experiments

To further test for functionality and limitations, the trained model was used to perform

real-time predictions within a new environment outside of the University of Toronto Myhal

Atrium and Hall settings where the paper’s proposed model is trained. This provides a

benchmark for implementing the model in hardware. Figure 16 shows the predictions being

done in real time within our lab environment.

Figure 17: Left; Predictions shown within Rviz, the dynamic (red) and permanent (light
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green) points are mixed with the trajectory predictions (yellow spot on ground). This
indicates that the network's effectiveness is confined to environments closely resembling the
training dataset. In contrast, the same model demonstrates a higher degree of accuracy in
segmenting classes within a simulation environment. This discrepancy must be considered
for the challenge of generalizing the model to different environments, as opposed to the
controlled conditions of being within Myhal where it can more precisely differentiate
between dynamic and static elements. Right; Real Jackal in the MC202 environment.

Overall, The SOGM Network's evaluation highlights hardware limitations and

generalization challenges as barriers to performance. Advancements in hardware and model

optimization are important for improved accuracy and generalizability. To achieve results

similar to the ground-truth predictions, the training, and different hardware experiments must

be conducted. The details for future implementations will be mentioned in the future works

section.
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4.5 Waypoint Navigation with Eureka

To consider the future implementation of the SOGM network in OIGE, we integrated

navigation within our simulator populated with dynamic obstacles as shown in Figure 17.

This approach aims at developing a policy that could serve as an alternative to traditional

planners, such as TEB which is the planner used in the SOGM paper. The goal was to craft a

policy that navigates efficiently towards a designated goal with socially compliant and robust

behaviors across various scenarios the Jackal robot might encounter.

Figure 18: Jackal dynamic obstacle avoidance training environment with waypoints (pink
cube)

The training regime for this navigation policy involved 128 parallel environments

and a mini-batch size of 1024 over 5000 epochs. With this configuration, we produced a

policy capable of navigating towards goals while avoiding dynamic obstacles. Building on

the foundation laid by the initial training, the Eureka framework was implemented to further

refine and enhance the performance of the developed navigation policy. Eureka was

integrated to iteratively improve the policy's effectiveness in dynamic obstacle avoidance

and goal-directed navigation. This optimized the navigation policy's performance, ensuring a

higher degree of social compliance and adaptability to a wide array of environmental
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scenarios. With the goal of effective waypoint navigation, two important metrics were

defined, a mean negative distance which is recorded after environment reset or 3000

episodes, and a mean correlation value between human and eureka rewards between -1 to 1.

The mean negative distance is derived from Eureka’s [40] implementation of the fitness

function for the quadcopter Isaac task that must reach a waypoint as well. This can be

defined as the policy’s success metric. Also, as seen in Figure 19, the harder the task is, the

less correlated the Eureka rewards are which is the value being closer to one. The paper also

claims a constant increase in performance with each sample and iteration due to the

evolutionary search and mutation Eureka is capable of as mentioned previously.

Figure 19: Eureka’s Isaac and Dexterity task’s ability to improve success metrics specific to

each task [40]
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4.6 Eureka Outputs and Evaluations

We begin the experiment by first specifying our task description with 4 samples and 2

iterations as a starting point as GPT-4 can produce more executable code with minimum

sampling:

Figure 20: The description specifies many details specific to the task environment. Note that
we include the social norm aspect for the LLM to consider when generating the initial
reward function for exploration. We also include task-specific details to aid in generating
executable code in fewer samples/iterations.

Out of the four samples in the first iteration, the 3rd and 4th samples are executed.

The feedback prompts are initiated based on the success and correlation metrics. The best

reward function is identified to be the 3rd sample since it is equal to the ID of 2:

Figure 21: Eureka feedback for the first iteration. The execute rate being at 0 is a bug due to
an inherent system modification. This iteration would have an execution rate of 50% since 2
out of the 4 generated samples ran. This is to do with the timing of recording the execution
of each training session which will be detailed in the future works section.
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The feedback continues to re-prompt the reward function generated by the best

sample. This is to ensure more context to providing positive mutations to the reward

function. Also, as seen in Figure 21, all scalar information of the reward metrics are saved

and prompted as well to provide scores of the current rewards. This allows signals for

adjusting scaling, implementing new reward calculations, and applying normalizations.

Figure 22: The scalar value feedback for all the reward metrics. Note that these reward
metrics are LLM generated and are stored as a dictionary by the reward function.

Continuing to the next iteration, all 4 samples are executed, indicating that the

previous reward function has mutated correctly. The performance has also improved as can

be seen in Figure 23 with a success of -2.23 meters and 0.025 correlation. This also confirms

the intuition of Eureka producing a lower correlation to human reward functions with

increasing difficulty in tasks.
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Figure 23: Tailored feedback designed to enhance the next iteration of samples. This is an
indicator that the more iterations we provide, the better the reward function.

The final reward function in Figure 24 is relatively simple to interpret as humans.

However, if performed manually, the process of comprehending the scaling and

normalization factors would have required days dedicated to experimentation with various

values to ascertain an optimal solution. On the contrary, Eureka has the potential to

iteratively improve to a degree surpassing the effectiveness of the initial reward function,

without human intervention, through a sufficient number of iterations.
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Figure 24: The best reward function generated in the 2nd sample of the 2nd iteration. Note
that there is a social_norm_dist parameter that is nuanced from our understanding of how it
should function. This is one of the key advantages of Eureka, the ability to take general
prompts and search for an aligned reward metric that works with human interpretability.

Finally, to confirm the improvements from the ground-truth reward function, we can

investigate the graphs produced for Eureka's scalar value evaluations.
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Figure 25: Top; Smoothed gpt_rewards which is the average reward per epoch, there is a
general uptrend that would seem to continue past the specified 5000 epochs Bottom;
Smoothed gt_reward is the ground truth rewards averaged from the original reward function
every epoch.

Although direct comparison is nuanced due to variations in scaling and

normalization, an analysis grounded in the operational mechanisms of both reward functions

reveals that the gpt_reward demonstrates a greater efficacy in generating reward signals.

Specifically, the original reward function was designed to progressively increase rewards as

it neared the goal, offering a substantial bonus upon reaching the goal. Despite this, it fails to

demonstrate a consistent improvement in average rewards, indicating a lack of significant

learning progress. Conversely, the reward function generated by the language model

consistently enhances its average rewards per epoch, suggesting ongoing learning and

adaptation to feedback signals.
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In Figure 26, it's noted that successes, defined as the negative mean distance to the

goal, are consistently maintained at around -3.4. This metric shows an improvement with the

increase in executed samples during the 2nd iteration, as depicted in Figure 27.

Figure 26: Top; Consecutive_successes defined as (mean -dist_to_target) in our task of
waypoint navigation. The policy maintains a constant success distance that is closer than the
Bottom; 1st iteration 2nd sample’s consecutive success distance of -4.8.

Figure 27: Max Success (mean -dist_to_target) over 2 samples in the 1st iteration and 4
samples in the 2nd iteration. Note that this is another sign of constant improvement over
each mutation stage.

This observation validates our intuition regarding Eureka's capability to iteratively

modify reward functions, leading to successive enhancements in the original reward function
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it commenced with. Remarkably, these improvements are observed after just two iterations,

implying that Eureka has the potential to generate exponentially superior reward functions

through additional iterations. Additionally, for a more tangible comparison, we can analyze

the target distances achieved by comparing a reward function crafted by humans against one

refined by Eureka, as illustrated in Figure 28.

Figure 28: Top; Target distance achieved over 5000 epochs for human-crafted reward
function, Bottom; Target distance achieved over 5000 epochs for Eureka-initialized and
tuned reward function using 5 iterations with 3 samples.

We can see that Eureka’s reward function performs significantly better than the

Human-crafted reward function. Figure 29 shows a further quantified result relative to Figure

28 by defining an average success rate based on the achievement of a target distance closer

than 2.0 meters which was chosen arbitrarily to be a sufficient success distance.
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Figure 29: Average success rate achieved for both Eureka and human-crafted reward
functions. Eureka (Blue) achieved a success rate of 56.5% and Human (Orange) achieved
5.80%.

Overall, there was a 50.7% increase in the success metric defined. Relatively, the

simulation outcomes highlight Eureka's proficiency in both avoiding obstacles and

successfully reaching the target, unlike the human-crafted approach that, despite being able

to avoid obstacles, fails to effectively reduce the distance to the goal. This suggests the

potential of using Eureka to enhance how reward functions are developed and iterated upon.

Also, Refining the fitness function [7] a.k.a the consecutive success to include criteria like

collision avoidance alongside target distance can significantly enhance the efficacy of

Eureka for developing and iterating reward functions. This allows for a more targeted and

effective training process by providing clear signals on both safety and efficiency in

waypoint navigation tasks.
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5 Conclusion and Future Works

In the development and evaluation of mobile robot social navigation through trajectory

prediction and reinforcement learning (RL) enhanced by Large Language Model (LLM)

tuning, we encountered several limitations that highlighted areas for future research and

development. A notable challenge was the performance bottleneck introduced by heavy

modifications to the Eureka framework, which surfaced by the constraints of Omniverse

Isaac Gym. Specifically, the simulator's limitation to a single instance significantly slowed

the iterative training process of the RL policies. This was compounded by an inefficiency in

the execution recording mechanism, which, due to modifications, could not accurately track

the execution time of each code iteration, affecting the overall speed and efficiency of the

Eureka-based reward tuning process. Additionally, the Spatial Occupancy Grid Maps

(SOGM) prediction network requires further training with enhanced hardware to improve its

accuracy and reliability. The evaluation pipeline also requires refinement to fully leverage

the predictive capabilities of the SOGM network. The integration of SOGM predictions with

the robot’s planning system presents another layer of complexity, requiring a robust

framework to synchronize prediction and navigation seamlessly.

Addressing these challenges opens several future tasks aimed at elevating the

efficacy of mobile robot navigation in social settings. Firstly, enhancing the generalizability

of the SOGM network is important to ensure its applicability across diverse environments.

This involves both hardware and software improvements alongside methodological

refinements to adapt the network to varying contexts and dynamics. Also, Extending the

prediction horizon beyond the current four seconds with more frequent updates could

significantly improve navigation decisions, allowing for more proactive and less reactive

maneuvers in dynamic environments. Integrating the trajectory prediction directly into the

waypoint navigation DRL framework within Omniverse Isaac Gym represents a pivotal area
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of future work. By treating predicted trajectories as observable metrics or obstacles, the

navigation policy can be enriched to account for future movements of dynamic entities,

facilitating a deeper understanding of the environment and enhancing social compliance.

This integration would enable the robot to anticipate and plan for human movements with

greater accuracy, adhering to various social norms and expectations. Moreover, the

incorporation of human feedback into the Eureka iteration process presents a promising

direction for refining robot behaviors to be more human-centric. By systematically reviewing

robot navigation behaviors and identifying areas for improvement, human evaluators can

guide the evolution of reward functions to better capture the nuances of socially acceptable

navigation. This feedback loop would ensure that the robot's behavior aligns more closely

with human expectations, enhancing its utility and acceptance in shared environments.

In summary, the progression of mobile robot navigation in social contexts relies on

addressing the technical limitations encountered in this research. By focusing on hardware

and software enhancements, extending the prediction capabilities of the SOGM network, and

tightly integrating predictive models with DRL-based navigation, future work can

significantly advance the state-of-the-art in socially aware robot navigation. The iterative

refinement of reward functions through human feedback and advanced LLM tuning further

promises to align robot behaviors with complex human social norms, paving the way for

robots that can navigate shared spaces with grace, efficiency, and social intelligence.
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