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Abstract— Mobile robots in unknown cluttered 

environments with irregularly shaped obstacles often face 
sensing, energy, and communication challenges which 
directly affect their ability to explore these environments. In 
this paper, we introduce a novel deep learning method, 
Confidence-Aware Contrastive Conditional Consistency 
Model (4CNet), for mobile robot map prediction during 
resource-limited exploration in multi-robot environments. 
4CNet uniquely incorporates: 1) a conditional consistency 
model for map prediction in irregularly shaped unknown 
regions, 2) a contrastive map-trajectory pretraining 
framework for a trajectory encoder that extracts spatial 
information from the trajectories of nearby robots during 
map prediction, and 3) a confidence network to measure the 
uncertainty of map prediction for effective exploration 
under resource constraints. We incorporate 4CNet within 
our proposed robot exploration with map prediction 
architecture, 4CNet-E.  We then conduct extensive 
comparison studies with 4CNet-E and state-of-the-art 
heuristic and learning methods to investigate both map 
prediction and exploration performance in environments 
consisting of uneven terrain and irregularly shaped 
obstacles. Results showed that 4CNet-E obtained 
statistically significant higher prediction accuracy and area 
coverage with varying environment sizes, number of robots, 
energy budgets, and communication limitations. Real-
world mobile robot experiments were performed and 
validated the feasibility and generalizability of 4CNet-E for 
mobile robot map prediction and exploration. 
 
Index Terms—Mobile robot exploration, contrastive learning, 
map prediction, consistency models, irregular-shaped unknown 
environments 

I. INTRODUCTION 
OBILE robots can be deployed in unknown and 
resource-limited environments to complete a variety 
of tasks, including searching for victims in disaster 
scenes [1], [2], forest coverage [3], and planetary 

exploration [4], [5]. These environments are cluttered, leading 
to partial observability from limited onboard sensing [6], and 
may also be dynamic, with other robots pursuing their 
respective goals. Furthermore, mobile robots have limited 
onboard energy storage and communication capabilities [7]. 
For example, in disaster scenes, rubble can obstruct 
communication between robots, preventing the exchange of 
map information as this requires high-bandwidth connectivity. 
Similarly, in remote environments, the absence of charging 
stations and extreme conditions (i.e., harsh weather) can limit 
both energy usage and communication capabilities [8]–[10]. 
 Existing mobile robots mainly use frontier-based 
exploration to achieve coverage in unknown environments [11].  
Frontiers are selected by estimating the expected information 
gain from the robot’s directly observed sensory data [12]. 
However, these estimations cannot account for the varying 
terrain and spatial structure in unobserved areas as they naively 
treat unknown regions as either entirely free-space or occupied 
[13]. As a result of this limited spatial awareness, a robot’s 
exploration goals may become suboptimal, leading to 
redundant exploration efforts [14]. 
 Robot map prediction can be used to predict the spatial 
configuration of unobserved regions in an unknown 
environment to help improve information gain during frontier 
selection [15]. Furthermore, map prediction assists with 
coverage of areas that are unreachable due to poor traversability 
and/or blocked pathways [16]. In scenarios, where mobile 
robots have limited energy budgets and communication 
capabilities, map prediction: 1) results in reduced travel, 
promoting energy conservation [17], and 2) minimizes the need 
for high-bandwidth communication of robot maps with other 
robots, thus alleviating the communication burden [18].  

The robot map prediction problem for unknown 
environments with irregular obstacles and changing terrain can 
be complex due to non-repetitive environmental geometries and 
noisy sensory information. In addition, existing map prediction 
methods have only been used in static single robot 
environments and have not been extended to consider dynamic 
multi-robot scenarios in which other robots are present and 
completing their own goals. However, the trajectories of these 
other robots can provide implicit information about the spatial 
layout of unobserved regions [19]. Namely, a robot’s deviation 
from a linear trajectory (indicating no direct route) 
characteristically implies the presence of an obstacle [20]. 
Therefore, a robot’s navigation path within an unknown 
environment can reveal obstacle contours that have not been 
directly observed. To-date, single mobile robot map prediction 
methods have primarily been deployed in structured indoor 
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environments, including office buildings where reoccurring 
spatial features such as corridors and rooms exist [21]–[25].  

To facilitate robot map prediction of unknown 
environments with non-repeating irregular obstacles, 
consistency models can be considered. Consistency models are 
a new class of generative models that employ a multi-pass 
prediction approach [27]. They can be used to iteratively refine 
predictions to generate a single map prediction [26], [27], 
enhancing map accuracy. This approach can provide an 
advantage over existing single-pass autoencoder architectures, 
e.g., [14], [16], [28], and Generative Adversarial Networks 
(GANs), e.g., [29], [30], which  also create map predictions in 
a single forward pass. Such approaches often produce less 
accurate maps due to the lack of iterative refinement in their 
prediction process [27]. To-date consistency models have not 
yet been developed for mobile robot map prediction. 

In this paper, we present a novel robot exploration map 
prediction method called Confidence-Aware Contrastive 
Conditional Consistency Model (4CNet), to predict (foresee) 
unknown spatial configurations in unknown unstructured multi-
robot environments with irregularly shaped obstacles. 4CNet is 
incorporated within our proposed robot exploration with map 
prediction architecture, 4CNet-E, consisting of a Perception 
and Communication subsystem and an Exploration Planner. 
4CNet uniquely integrates the three key components of 
confidence awareness, contrastive learning, and conditional 
consistency model for efficient robot exploration under limited 
energy budget and communication capabilities. The main 
contributions of 4CNet are: 

1) The development of a novel map prediction network 
that is the first to use a conditional consistency model 
to predict the spatial configuration of unobserved 
regions within a partially explored environment with 
irregularly shaped obstacles and uneven terrain. 

2) The unique utilization of contrastive learning to pre-
train a trajectory encoder for the extraction of spatial 
information from nearby robot trajectories; allowing 
our map prediction approach to account for both static 
and dynamic environment features. 

3) The first implementation of a confidence network for 
map prediction to guide robots towards uncertain 
regions to maximize prediction accuracy with limited 
energy budgets. 

II. RELATED WORKS 

 The review presented here is classified as: 1) mobile robot 
map prediction methods [14], [16], [17], [21]–[25], [28]–[32], 
and 2) robot energy-aware exploration methods [11], [33], [42], 
[43], [34]–[41]. 

A. Mobile Robot Map Prediction Methods 
 Map prediction methods can be classified into heuristic-
based [21]–[25] or deep learning (DL)-based [14], [16], [17], 
[28]–[32] methods. Heuristic-based methods utilize predefined 
rules to interpret spatial layouts by exploiting structural patterns 
in the robot’s environment. In contrast, DL methods utilizes 
deep neural networks to detect spatial features within a high-
dimensional space in order to make map predictions. 

1) Heuristic-based Methods  
 Heuristic map prediction methods have used either map 
databases (DB) [21]–[23], representative lines [24], or low-rank 
matrix completion (LRMC) [25] to define a set of predefined 
rules that have interpreted spatial layouts for the exploitation of 
structural patterns in the robot’s environment. 
 In DB methods, individual robots have access to a database 
of 2D robot maps prior to deployment. These maps are typically 
of repetitive structured environments such as rooms and 
corridors [22]. In general, DB methods have two phases [21]–
[23]. Firstly, they identify a reference map from the database 
based on structural similarities to the unknown region using 
metrics such as feature vectors from Fast Appearance Based 
Mapping (FabMAP2) [22], counts of overlapping occupied 
cells [21], or highest likelihood of feature resemblance [23]. 
Secondly, they merge a reference map with the unknown region 
using techniques such as RANSAC-based Voronoi graph 
alignment [22], spatial alignment using homogenous transform 
matrices [21], or Gaussian filtering for spatial coherence [23].  
 Representative lines methods have been used in rectilinear 
environments, where 2D lines represent straight walls and 
corners [24]. These methods extrapolate lines from observed 
areas to unobserved regions using an objective function to 
maximize: 1) wall count uniformity by balancing distribution 
of walls in the predicted room layout, and 2) an simplicity index 
to minimize the shape complexity of predicted room layouts. 
 LRMC methods have been used to reconstruct missing cell 
information in a robot 2D map matrix by exploiting the low 
rank and incoherence characteristics of an environment [25]. 
These methods utilize an iterative Singular Value 
Decomposition solver to minimize the norm of the matrix by 
aggregating the singular values [44]. Missing cells in the map 
matrix are predicted by exploiting the linear relationships 
between the columns and rows of the map matrix. 
 The aforementioned map prediction methods have been 
applied to robot exploration [21]–[23], and path planning for 
coverage [24], [25] problems. Namely, for exploration, the 
predicted robot maps have been used to complete the 
exploration of unobserved areas [21] and enhance frontier 
selection by providing expected information gain from 
unobserved parts of the environment [22], [23]. Experiments in 
structured indoor [21], [23] and repetitive underground tunnel 
environments [22] showed that exploration with map prediction 
provides more accurate maps and reduced travel distances when 
compared with non-map prediction exploration methods [45]. 
In coverage path planning, predicted maps inform offline 
methods such as Christofides [46] and tabu search [47]. 
Simulations in structured indoor [24] and grid world 
environments [25] have showed that path planning with map 
prediction has improved coverage ratio when compared to 
planning strategies without map prediction (i.e., lawnmower 
planning [48] and adaptive k-swap heuristic [49]). 
2) Deep Learning-based Methods 
 DL based methods used for map prediction consist of 
autoencoder models [14], [16], [17], [28], [31], [32], or GANs 
[29], [30]. 
 In an autoencoder model for robot map prediction, the 
encoder network uses down sampling layers to capture the 
spatial context from pixel-level features from either partially 
observed 2D maps [14], [16], [28], [32] or RGB-D images from 
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robot-centric viewpoints [17], [31]. The decoder network then 
reconstructs the spatial embeddings extracted by the encoder 
network into map predictions through up sampling layers. 
Existing autoencoder models include network components such 
as either: 1) convolutional layers [28], or fully connected layers 
with skip connections [16], [17], [31], [32], in the encoder and 
decoder networks, or 2) a probabilistic latent space bottleneck 
[14] between the encoder and decoder networks. 

In contrast, robot map prediction methods using GANs 
generate maps with a game-theoretic approach involving a 
generator and a discriminator convolutional network [29], [30]. 
The generator network learns to generate complete robot maps 
by replicating the distribution of robot maps that are present in 
a dataset. The discriminator network then evaluates the 
generated map predictions with maps in the dataset to provide 
an evaluation signal for the loss function of the generator during 
training. This adversarial process progressively refines the 
ability to produce robot maps [50]. 
 The above DL based map prediction methods have been 
used for robot exploration [14], [16], [17], [28]–[30], [32], and 
semantic mapping [31] in simulated and real-world structured 
environments. For exploration, the predicted map from 
autoencoder models and GANs were used with information-
theoretic frontier selection methods to improve exploration 
efficiency over exploration methods without map prediction in 
terms of travel distance [17], [32], [14], [30], coverage [14], 
[16], exploration time [28], and map accuracy [29]. For 
semantic mapping, the predicted map was used to segment and 
label different objects (i.e., chairs, desks) within the 
environment, in order to fill in missing geometric data within 
the map of a robot [31].  

B. Energy-Aware Exploration Methods 
 Existing robot energy-aware exploration methods have 
focused on traversing unknown regions in an environment to 
generate maps, while minimizing travel distances and operation 
times [11], [51]. Maps or intended exploration goals were 
communicated between nearby robots in a team in a 
decentralized manner to select complementary goals in order to 
reduce redundant coverage [35]. These approaches can be 
categorized into three categories: 1) utility-based [11], [38]–
[41], 2) market-based [33], [34], [42], [43], and 3) deep 
reinforcement learning (DRL) methods [35]–[37].  
 Utility-based robot exploration methods have used a utility 
function to select frontiers that maximize expected information 
gain and minimize travel cost [11], [38]–[41]. The objective is 
to maximize coverage and minimize robot energy consumption. 
On the other hand, market-based exploration methods have 
used a robot bidding procedure for frontiers based on estimated 
travel cost (distance, time) for exploration [33], [34], [42], [43]. 
Individual robots minimize their travel cost, while the team 
maximizes its coverage. DRL techniques such as Double Deep 
Q Recurrent Networks (DDRQN) [35], Multi-agent Proximal 
Policy Optimization (MAPPO) [36], and Multi-agent Deep 
Deterministic Policy Gradient (MADDPG) [37], have been 
used to train decentralized exploration policies that maximize 
the expected discounted reward over the horizon of an episode. 
These reward functions positively reward a robot for area 
coverage while negatively reward distance traveled and time 
elapsed. Robot experiments were conducted in both simulation 

and real-world structured environments, to highlight the 
difference in travel distance/time between exploration methods.  

C. Summary of Limitations 
 Existing heuristic and DL-based map prediction methods 
can suffer from lower prediction accuracy in terms of spatial 
structural features and pixel-level image feature textures [32]. 
Namely, heuristic methods assume the existence of similar 
static environments with rectilinear spatial features during 
prediction [21]–[25]. Therefore, they are not able to provide 
accurate map predictions for unstructured environments with 
irregular-shaped objects and uneven terrain.  
 Both autoencoder models and GANs rely on single-pass 
predictions, where the input map is processed in a single 
forward (computational) pass through the network. This single-
pass approach limits these DL methods from integrating 
intricate spatial features of complex environments into high-
fidelity predictions, resulting in blurry maps with inconsistent 
structural details [27]. Furthermore, GANs have encountered 
unstable training and mode collapse due to the adversarial 
dynamics between generator and discriminator networks, 
resulting in poor performance in capturing diverse map data and 
environmental complexity during prediction [52], [53]. To-
date, autoencoder models are favored for map prediction tasks 
for their ability to reconstruct robot maps from partial 
observations.  
 Existing map predictions methods also assume uniform 
confidence across all predicted pixels, which can lead to 
suboptimal decision-making during robot planning [54]. 
However, quantifying map prediction uncertainty allows more 
informed evaluation of potential information gain from visiting 
different exploration goals [32]. Furthermore, map prediction 
methods focus on single robot environments, not considering 
scenarios with multiple robots. In such scenarios, the 
trajectories of nearby robots can be uniquely leveraged to 
provide contextual data for unobserved regions [17].  

On the other hand, energy-aware exploration methods do not 
address challenges where: 1) a robot may not have sufficient 
energy to explore an entire environment, and 2) a robot cannot 
share map data due to communication limitations. Therefore, a 
robot exploration method is needed that can utilize map 
prediction to maximize coverage, while addressing limitations 
in onboard energy storage and communication capabilities. 

III. THE ROBOT MAP PREDICTION PROBLEM FOR RESOURCE 
LIMITED EXPLORATION 

A. Problem Definition 
The robot map prediction problem for resource limited 

exploration requires a mobile robot to explore an unknown, 
dynamic, and unstructured environment. The environment may 
consist of other mobile robots achieving their own goals. Each 
robot explores the environment and operates under constrained 
communication capabilities and a limited energy budget. The 
goal is to maximize a robot’s knowledge of the configuration of 
the environment using both the observed region of the 
environment, 𝑀!

"#$, and the predicted spatial configuration 
from the unobserved region of the environment, 𝑀!

%&'(. 
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Robots: N number of non-holonomic mobile robots can exist in 
an environment, 𝑅 = {𝑟), 𝑟*, … , 𝑟+}. Each robot 𝑟! has an 
onboard sensor with a sensing range of 𝑠 for mapping its 
surroundings. The robots have their own individual exploration 
goals and only share their trajectory information when within 
this sensing range. Energy consumption, 𝐸!, for robot 𝑟! is 
modeled as a linearly decaying function with respect to the 
distance ∆𝑑! traversed by the robot, and the change in elevation 
∆𝑧! during robot navigation. Therefore, the energy consumption 
model is defined as: 
 

𝐸!(∆𝑑𝑖	, ∆𝑧𝑖) = 
𝑞! −	3(𝑤! ⋅ ∆𝑑!) + 7𝑘! ⋅ max(0, ∆z,)>?, 

(1) 

 
where 𝑞! and 𝑤! are constants that denote the initial energy 
budget for 𝑟! and the energy consumed per unit distance 
traveled, respectively. 𝑘! is the energy cost for vertical motion 
along the z-axis. The function max(0, ∆𝑧!) signifies that 
additional energy is consumed only when the robot is ascending 
(∆𝑧! > 0), while no additional energy is consumed for 
descending or traversing over flat terrain (∆𝑧! ≤ 0). The 
trajectory of robot 𝑟! is denoted as 𝜏!. This trajectory is a 
temporally ordered set of robot positions up to the current time 
step, 𝑡, and is represented as:  
 

𝜏! = D7𝑥-! , 𝑦-!>, 7𝑥-" , 𝑦-">, … , (𝑥- , 𝑦-)G. (2) 
 
Environment: The environment is represented by both 
traversable uneven terrain and non-traversable irregular shaped 
obstacles. The environment is discretized into a heightmap 𝑀., 
where each cell in the map, 𝑚(0,2), is characterized by its (𝑥, 𝑦) 
coordinates and contains elevation information within a 
specified range [𝑙4!+, 𝑙450]. Thus, the heightmap is defined as: 
 

𝑀ℎ = D𝑚(0,2) ∣ 𝑚(0,2) ∈ [𝑙4!+, 𝑙450], ∀(𝑥, 𝑦)G,	 (3) 
 
where each robot’s position, 𝑝! = (𝑥! , 𝑦!), represents a specific 
cell 𝑚(0#,2#) in 𝑀.. 
Communication between Robots: Robots can exchange their 
trajectories, 𝜏!, when they are within sensing range,	 𝑠.	 The 
number of robots within 𝑠 is defined as 𝑅$; 𝑅$ ⊆ 𝑅. To account 
for the stochastic nature of communication in real-world 
environments, a Communication Success Probability (CSP), 
𝐶 ∈ [0,1], [35], is incorporated to represent the likelihood of 
successful trajectory transmissions between robots. To 
implement CSP, each robot position at time 𝑡 in the trajectory, 
𝜏!-, is associated with a Bernoulli event represented by a random 
variable 𝐵-. 𝐵- captures the success of communication: a value 
of	1	occurring with probability 𝓆 denotes a successful 
transmission of 𝜏!-; while a value of 0 with the complementary 
probability 1 − 𝓆 denotes a transmission failure. The 
transmitted trajectory, 𝜏!6, is a subset of the robot’s traversed 
trajectory 𝜏!. Specifically, 𝜏!6 includes only those positions for 
which 𝐵- = 1, and is expressed as: 
 

𝜏!6 = {(𝑥- , 𝑦-)	|	(𝑥- , 𝑦-) ∈ 𝜏! ,𝐵𝑡 = 1}	. (4) 
 

Once  𝑟!  receives trajectory information from all other robots 
within sensing range, 𝑅$, the communicated trajectories are 
aggregated into a collective set δ- = {𝜏!6}!∈8$. 
Map Prediction Task: Each robot predicts the unexplored 
environment configuration based on 1) its own observed 
portion of the environment during exploration, 𝑀!

"#$, and 2) the 
trajectory information of nearby robots, δ-. Thus, the predicted 
map 𝑀9Y of the entire environment is represented as: 
 

𝑀9Y = 𝑓:7D𝑀!
"#$, δ-G>. (5) 

 
𝑀9Y is defined by 𝑀!

"#$ ∪𝑀!
%&'(. The goal is to approximate the 

map prediction function 𝑓: such that 𝑀9Y can be used by a 
frontier-based exploration method, 𝜕, to account for both 
observed and predicted map information during exploration.  
Exploration Objective Function: The exploration objective is 
to maximize robot spatial knowledge given a limited energy 
budget, 𝑞!. Namely, the objective is to maximize the utility of a 
frontier, 𝑈, selected by 𝜕,  over the time horizon, ℎ, while 
adhering to energy consumption limits, 𝐸!, of the robot 𝑟!:  
	

maximize  bc  
;

<=)

𝑈 d𝜕 e𝑓:7𝑀!
"#$, 𝛿->ghi,	

𝑠. 𝑡. 𝐸!(∆𝑑! , ∆z,) ≥ 3(𝑤! ⋅ ∆𝑑!) + 7𝑘! ⋅ max(0, ∆z,)>?. 

(6) 

B. Map Prediction Using Consistency Models  
 In order to learn the map prediction function 𝑓: in Eq. (5), 
we utilize consistency models [26]. Consistency models can 
predict the spatial layout within unexplored regions based on 
Gaussian noise input and nearby robot trajectories. This is 
achieved in two-stages: a noising stage and a denoising stage.  
Noising Stage: A Probability Flow Ordinary Differential 
Equation (PF ODE) is used to model the temporal evolution of 
the map prediction process. Specifically, an PF ODE represents 
the transition from a robot’s initial noiseless map state, 𝔪>, to a 
terminal map state representing Gaussian noise, 𝔪?. This 
transition occurs across a series of time steps 𝓉, with each step 
undergoing a calculated perturbation by the addition of 
Gaussian noise. The output of the noising stage is a sequence 
{𝔪𝓉}𝓉∈[B,?], Fig. 1, where each step represents a map with 
gradual increase in noise. The noise applied at each 𝓉 is 
determined by: 1) a predefined noise schedule that determines 
the standard deviation of the noise to be incrementally added, 
and 2) the total noising steps, 𝑇, to determine the number of 
increments required to reach full noise. 
Denoising Stage: The map prediction function, 𝑓:, describes a 
consistency model. Its objective is to obtain the original map 
state 𝔪> from any map state 𝔪𝓉 in the PF ODE sequence 
{𝔪𝓉}𝓉∈[B,?]. Namely, the parameterized map prediction function 
considers the time step of the sequence 𝓉, the partially known 
map 𝑀!

"#$, and the given robot trajectories δ-:  
 

𝑓:7𝑀!
"#$, 𝓉, δ-> = 𝑝skip (𝓉)𝑀ℎ +
𝑝out (𝓉)𝐹:7𝑀!

"#$, 𝓉, δ->, 
 
(7) 
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where 𝑝skip and 𝑝out  are weighting coefficients that serve two 
purposes. First, given a time step near the origin of the PF ODE, 
denoted by 𝓉 < 𝜖, 𝑓: provides the ground truth heightmap, 𝑀., 
as the output. Second, as 𝓉 increases, the output of 𝑓: 
increasingly transitions to the output of the predictive model, 
𝐹:. The change in output between 𝑀. and 𝐹: is achieved by 
enabling 𝑝skip (𝓉) to decrease and 𝑝out (𝓉) to increase as 𝓉 
increases. The initial conditions are 𝑝skip (𝜖) = 1 and 𝑝out (𝜖) =
0. Thus, 𝑝skip and 𝑝out  ensure that 𝑓: is differentiable for model 
training through backpropagation. During inference, 𝑓: can be 
sampled with multiple passes through the map prediction 
network to refine the prediction quality iteratively.  
 

 
Fig. 1. Map prediction function, 𝑓!, described as a consistency model that learns 
to transform any robot heightmap state, 𝔪𝓉, along the Probability Flow 
Ordinary Differential Equation sequence to the original map state, 𝔪#. In the 
original map state at 𝔪#, white lines represent obstacle contours, and the gray 
scale gradient represents traversable uneven terrain. 𝔪$ represents the terminal 
map state consisting of Gaussian noise. 

IV. THE ROBOT EXPLORATION ARCHITECTURE WITH MAP 
PREDICTION  

The proposed DL robot exploration with map prediction 
architecture, 4CNet-E, Fig. 2, has been developed to predict 
maps of partially explored environments consisting of irregular 
shaped obstacles and uneven terrain. The goal of this 
architecture is to use the predicted maps to guide robots towards 
unexplored regions with high expected information gain, while 
addressing fixed energy budgets and limited communication. It 
consists of three main subsystems: 1) Perception and 
Communication, 2) 4CNet, and 3) Exploration Planner. The 
Perception and Communication subsystem generates a 2D 
partial map, 𝑀!

"#$, using robot LiDAR and odometry 
information via the Simultaneous Mapping and Localization 
(SLAM) module. It also communicates and receives trajectory 
information, 𝛿-, from nearby robots using the Communication 
module. 𝑀!

"#$ and 𝛿- are used by the Trajectory Encoder 
module in 4CNet to produce trajectory embeddings, 𝜎-&5<, that 
extract spatial features from 𝛿- to condition the Map Prediction 
Network (MPN). The MPN uses these embeddings to generate 
the predicted map 𝑀9Y. 𝑀9Y	is used by the Confidence Network 
(CN) to obtain a confidence map 𝐶! for each predicted pixel 
within 𝑀9Y. The output of 4CNet is both 𝑀9Y and 𝐶!, which are 
used in the Exploration Planner subsystem to select a frontier 
goal location for the robot using a utility function 𝑈. The 
selected frontier goal is used by the Navigation Controller to 
generate a navigation trajectory, 𝜏D"5E. The main subsystems of 
4CNet-E are discussed below in further details. 

A. Perception and Communication Subsystem 
 The SLAM module in the Perception and Communication 
subsystem utilizes robot odometry, 𝜌!, and onboard 3D LiDAR 
observations, 𝑜!, to localize the robot in the environment, 𝑝!, 
and to generate a map of the observed regions, 𝑀!

"#$. Real-time 
Appearance Based Mapping (RTAB-Map) [55] is used to 
generate a graph-based map with nodes representing LiDAR 
scans. These nodes are connected by edges that represent spatial 
relationships between successive LiDAR scans. The 
Communication module is used to transmit the robot’s own 
trajectory 𝜏!6, and receive trajectory data, 𝛿-, from other robots 
within range 𝑠. 𝛿- is represented as a 2D binary array, producing 
a binary trajectory image, 𝛿-t , that visually represents the 
trajectories of the robots. Both 𝛿-t , and 𝑀!

"#$ are provided to 
4CNet for map prediction. 

B. 4CNet 
 4CNet consists of three modules: 1) Trajectory Encoder, 2) 
Map Prediction Network, and 3) Confidence Network. 
1) Trajectory Encoder 

The objective of the Trajectory Encoder module is to 
encode the available trajectories from other robots, δ-, into a 
trajectory embedding vector, 𝜎-&5<. We introduce a unique 
Contrastive Map Trajectory Pretraining (CMTP) framework to 
contrast robot trajectory and map features in order to capture 
spatial information (i.e., obstacle contours) implicitly present in 
robot trajectories. The CMTP framework utilizes two distinct 
encoders: a map encoder, 𝐸45%, for extracting spatial features 
from 𝑀. used during pretraining, and a trajectory encoder, 
𝐸-&5<, for extracting robot coordinate features from 𝛿-t , used 
during both pretraining and inference. Both encoders use a 
ResNet50 backbone [56], and a projection head with two fully 
connected (FC) layers, Fig. 2. During contrastive learning [57], 
𝐸45% and 𝐸-&5< are pretrained simultaneously to align robot 
spatial and coordinate features from 𝑀. and 𝛿-t  into a common 
representation space, ℛ. Specifically, 𝐸45% transforms the 
ground truth heightmap 𝑀. into a map embedding vector, 𝜎45%. 
Concurrently, the trajectory image, 𝛿-t , is used by 𝐸-&5< to 
generate a robot trajectory embedding vector, 𝜎-&5<. The 
contrastive loss function, ℒFGH?, for CMTP is defined as: 
 

ℒCMTP 

= −𝔼 xlog
exp7𝓀	7𝜎map , 𝜎traj >/𝜇>

∑  Mtraj 
% ∈	𝒟&' exp	7𝓀	7𝜎map , 𝜎traj 

6 >/𝜇>
�, (8) 

 
where ℒCMTP  computes the expected value of the negative log 
probability that a robot heightmap embedding, 𝜎map , has a 
higher similarity score with its corresponding trajectory 
embedding, 𝜎traj , compared to other trajectory embeddings, 
𝜎traj
6 , within the dataset, 𝒟G?. Herein, 𝒟G?, is a dataset of robot 

heightmaps and trajectories. The function, 𝓀, measures the 
cosine similarity between embedding pairs, outputting a 
similarity score. The exponential function, exp, is used to 
normalize similarity scores for effective gradient descent 
optimization during training. The temperature parameter, 𝜇, is 
used to control the sharpness of the distribution of similarity 
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scores to directly influence the gradient magnitudes during 
backpropagation. Minimizing ℒCMTP  will maximize the 
similarity scores between map-trajectory embedding pairs. The 
Trajectory Encoder provides trajectory embeddings, 𝜎traj , to 
the Map Prediction Network. 
2) Map Prediction Network 

The Map Prediction Network (MPN) predicts the spatial 
configuration of an unobserved region within a partially 
explored environment using: 1) the robot observed map 𝑀!

"#$, 
and 2) the trajectory embeddings 𝜎traj. The MPN is designed as 
a 2D U-Net architecture, where the encoder consists of five 
convolutional blocks with output channels of [128, 128, 256, 
256, 512], Fig. 2. The decoder mirrors the encoder by having 
an equal number of convolutional blocks with the reverse 
output channels [512, 256, 256, 128, 128]. Cross-attention is 
integrated into the middle three blocks of both the encoder and 
decoder in the MPN to only integrate relevant trajectory 
features during the map prediction process.  

For training of the MPN, an online network, 𝒇𝜽, and a target 
network, 𝒇𝜽(, are used, where 𝒇𝜽 is used to predict the robot 
heightmap state at 𝓉 + 1, and 𝒇𝜽( is used to predict the robot 
heightmap state at 𝓉, along the PF ODE sequence. To ensure 
stable training, the weights of 𝒇𝜽( are set as an exponential 
moving average (EMA) of the weights of 𝒇𝜽, described by:  

 
𝜃Q = ℋ𝜃Q + (1 −ℋ)𝜃, (9) 

 
where ℋ is the smoothing factor. EMA is used for 𝜃Q to prevent 
drastic shifts in the 𝒇𝜽( behavior due to large updates to the 
network parameters [58]. The MPN loss function, ℒMPN , uses 
stochastic gradient descent to minimize the prediction 
differences between the two networks: 

 
ℒMPN	 = 

𝔼 �𝜆(𝑡+)ℒm	 �
𝑓:7𝔪𝓉)*! + 𝓉+S)𝜉, 𝓉+S), 𝜏!>,
𝑓:(7𝔪𝓉) + 𝓉+𝜉, 𝓉+, 𝜏!>

��.	 (10) 

 

Herein, ℒm	 computes the difference between the predicted 
maps from 𝑓: and 𝑓:(, while adhering to the consistency 
property in Eq. (7). The weighting function 𝜆(𝑡+) adjusts the 
significance of each term in the loss. 𝜉 is the Gaussian noise 
vector and represents the normally distributed noise sampled 
from 𝑁(0, I) [26]. We designed ℒm	 as a compound loss 
function that uses Perceptual Image Patch Similarity (LPIPS) 
[59] and the Edge Loss function, ℒ'. In particular, LPIPS is 
used to evaluate the perceptual similarity score between the 
terrain features in the predicted maps, (𝔪: ,	𝔪:(), from 𝑓: and 
𝑓:(, respectively. The goal is to ensure that both predicted maps 
have high similarity in terms of visual and structural 
characteristics. The LPIPS function, LPIPS(𝔪: ,	𝔪:(), is 
expressed as [59]:  
 

LPIPS(𝔪: ,	𝔪:()=𝜙 e∥∥𝑉7𝔪:𝑖>−𝑉7𝔪:(𝑖>∥∥2
2
g, (11) 

 
where 𝑉 represents a function that extracts pixel features from 
the predicted maps, 𝔪: ,	𝔪:(. The function, 𝜙, applies a 
nonlinear transformation to the squared Eclidean distance 
between these extracted pixel features. This transformation 
converts the differences in the pixel feature space into the 
perceptual similarity score [59]. 
 The Edge Loss function, ℒ', is used to compare boundary 
contours of irregularly shaped obstacles within the predicted 
robot heightmaps (𝔪: ,	𝔪:(), and is formulated as: 
 

ℒ'(𝔪: ,	𝔪:() =
)
ℵ
∑  ℵ
!=) ∥ 𝓈7𝔪:𝑖> − 𝓈7𝔪:(𝑖> ∥*

*,	 (12) 
 
where 𝓈 is the Sobel operator [60] used to detect the boundary 
contours of obstacles in 𝔪: ,	and	𝔪:(. By combining LPIPS, 
and ℒ',  ℒm	is formulated as: 
 

ℒm	 = 	𝒶 ⋅ 	LPIPS(𝔪: ,	𝔪:()		
+	𝒷 ⋅ 	ℒ'(𝔪: ,	𝔪:(),	

(13) 

 

 
Fig. 2. The 4CNet-E exploration with map prediction architecture for resource limited exploration in 3D unknown unstructured multi-robot environments with 
uneven terrain. A in the Map Prediction Network denotes the cross-attention mechanism for robot trajectory conditioning. CONV represents Convolutional 
Blocks, and FC represent Fully Connected layers. 
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where 𝒶 and 𝒷 are scaling hyperparameters for the LPIPS and 
ℒ' components, respectively. The output of the MPN is the 
predicted robot heightmap 𝑀9Y which is provided to both the 
Confidence Network and Exploration Planner modules. 
3) Confidence Network 

The Confidence Network (CN) is used to measure the 
uncertainty of 𝑀9Y. The aim of CN is to guide robot exploration 
towards frontier regions with higher prediction uncertainty. 
Inputs into the CN include a single two channel image, where 
the first channel contains the predicted map 𝑀9Y, and the second 
channel contains the nearby robot trajectory image 𝛿-t . 

The CN uses a Residual Fully Convolutional Variational 
Autoencoder (RFC-AEM) model to produce a confidence map, 
𝐶!, which represents the uncertainty of each predicted cell 
𝑚(0,2) within 𝑀9Y. The RFC-AEM consists of an encoder and 
decoder, Fig. 2. The encoder includes six convolutional layers, 
each followed by batch normalization and a Leaky ReLU 
activation function. These layers facilitate map feature 
extraction and utilize a latent space bottleneck for 
dimensionality reduction to capture only the most salient 
features from the input map. The decoder mirrors the encoder 
with six transposed convolutional layers, enabling the 
reconstruction of detailed confidence maps from the compact 
encoded latent representations of the encoder. 

The CN adopts a self-supervised training paradigm. Ground 
truth confidence maps, 𝐶!V?, are obtained by comparing the 
prediction, 𝑀9Y, with the ground truth heightmap, 𝑀., where 
each value in 𝐶!V? is a binary indicator, specifying whether the 
prediction is correct or incorrect. To train the CN, a pixel-wise 
Mean Squared Error (MSE) loss function is utilized: 
 

ℒWXY =
)
ℵ
∑  0,2∈G+Z (𝐶!(𝑥, 𝑦) − 𝐶!V?(𝑥, 𝑦))*, (14) 

 
where ℵ represents the total number of pixels in 𝑀9Y, and 𝑥, 𝑦 are 
the pixel coordinates of 𝑀9Y. Minimizing ℒWXY, minimizes the 
uncertainty measure between 𝑀9Y and 𝑀.. The predicted 
confidence map 𝐶! is provided to the Exploration Planner for 
frontier exploration. 

C. Exploration Planner 
 The objective of the Exploration Planner subsystem is to: 
1) choose frontiers that maximize the utility function, 𝑈, while 
maintaining the energy budget of a robot, Eq. (6), using the 
Frontier Selection module, and 2) have the robot navigate 
towards the frontier goal using the Navigation Controller. The 
Frontier Selection module, 𝜕, uses the robot’s predicted map 
𝑀9Y and the associated confidence map 𝐶! to evaluate the utility, 
𝑢, of a frontier location, 𝑔(𝑥, 𝑦), and selecting the 𝑔 with the 
highest 𝑢. The utility function, 𝑈(𝑔), calculates the 𝑢 of each 𝑔 
based on the expected information gain 𝐼, traversability score 
𝒯, and travel distance to goal 𝐷: 
 

𝑈(𝑔) = 𝛼 × 𝐼 + 𝛽 × 𝒯 + 𝛾 × 𝐷. (15) 
 
Herein, the expected information gain is determined by the 
estimated traversable area and its uncertainty. Specifically, 𝐼 is 
computed by evaluating the traversable areas, 𝐴𝒹,,, in the 
predicted map, 𝑀9Y, within a fixed radius, 𝒹&, around the frontier 

position, 𝑔. Note, only the predicted region, 𝑀!
%&'(, within 𝑀9Y 

is considered. This evaluation involves integrating the 
traversable area values in 𝑀tE which are weighted by the 
corresponding confidence scores from 𝐶! over 𝐴𝒹,,. 𝐼 is then 
obtained by averaging ∫  \𝒹,,

𝑀tE ⋅ 𝐶! 	𝑑𝐴 over the total area of 
𝐴𝒹,	: 

𝐼 =
1

¦𝐴𝒹𝑟,¦
§  
\𝒹𝑟,

𝑀tE ⋅ 𝐶!	𝑑𝐴. (16) 

 
The traversability score 𝒯 is the summation of elevation values 
𝑚(0,2) along the shortest collision-free path between the robot’s 
current position 𝑝 and the frontier 𝑔 denoted as 𝜏%→D. Thus, the 
traversability score is described by: 
 

𝒯 = ∑ 𝑚(0,2)^/→1 . (17) 
 
𝐷 is calculated as the length of 𝜏%→D. The coefficients 

[𝛼, 𝛽, 𝛾] in Eq. (15) are determined through domain expert 
tuning in order to prioritize frontiers that maximize 𝐼 while 
minimizing 𝒯 and 𝐷. The frontier 𝑔 with the highest 𝑢	is used 
by the Navigation Controller module for global planning using 
Spatial Temporal A* [61] and local path planning using Timed 
Elastic Band Planner [62]. 

V. DATASETS 
We developed two simulated datasets to train 4CNet. These 

datasets include: 1) a map-trajectory dataset for training the 
Trajectory Encoder and MPN modules, and 2) a prediction map 
dataset used for the training of the CN.  
Map-Trajectory Dataset, 𝓓𝐌𝐓: 2D heightmaps, 𝑀., were 
generated using the Diamond-Square Algorithm [63], Fig. 3(a), 
with irregularly shaped obstacles (white lines), and uneven 
terrain (grayscale gradients). Each heightmap has a resolution 
of 224 × 224 pixels which represents a spatial area of 
30	 × 	30	m. The number of robots in each environment is 
randomly varied from 2 to 6 robots, with each robot having 
random feasible start and end positions in the environment. The 
A* search algorithm [64] was used to generate collision-free 
paths between these positions for each heightmap. To simulate 
communication dropout, CSP was applied to probabilistically 
remove robot positions from the A* generated trajectories at 
dropout rates of 25%, 50%, and 100% (Eq. (4)), Fig 3(c)-(e). In 
total, the dataset includes 75,000 pairs of heightmaps, 𝑀., and 
robot trajectories, 𝛿-. For evaluation purposes, 20% of the 𝒟Wa 
was used as the test set, 𝒟WaQa. 
Predicted Map Dataset, 𝓓𝐏𝐌:	 The Predicted Map Dataset 
contains 20,000 samples of: 1) 2D predicted heightmaps, 𝑀9Y, 2) 
ground truth heightmaps, 𝑀., and 3) corresponding robot 
trajectories, δ!. The predicted heightmaps were generated by 
randomly masking regions of the ground truth heightmaps in 
the 𝒟Wa to simulate partial maps (Fig. 3(b)) and using the MPN 
to generate the predicted map 𝑀9Y. Each 𝑀9Y is paired with its 𝑀. 
as well as the corresponding 𝛿! from the 𝒟Wa. 
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Fig. 3. Robot heightmaps for scenes with 2 to 6 robots: (a) Ground truth map 
of environment with irregularly shaped obstacles (white lines) and uneven 
terrain (grayscale gradient for terrain height); and (b) Input map of observed 
area, unobserved (masked) regions are black. The dotted color lines represent 
communicated trajectories from different robots at: (c) 25% CSP, (d) 50% CSP, 
and (e) 100% CSP. 

VI. TRAINING OF 4CNET 
 Training consisted of: 1) using the proposed CMTP 
framework to train the Trajectory Encoder, 2) training of the 
Map Prediction Network conditioned on robot trajectory 
embeddings, and 3) training of the Confidence Network based 
on the predictions of the MPN. All training was conducted on a 
workstation with i9-13900KF Intel CPU, Nvidia RTX 4090 
GPU, and 64 GB of RAM. 

A. Contrastive Map Trajectory Pretraining  
 The CMTP framework was used to train the Trajectory and 
Map Encoder modules in parallel, as described in Section 
IV.B.1. Namely, CMTP was trained with a batch size of 128. A 
neural dropout rate of 0.3 was used to promote generalizability 
of the model and minimize overfitting [65]. We used a learning 
rate of 0.001 for gradient descent optimization, and a 
temperature of 1 was selected for the softmax function in the 
contrastive loss, Eq. (8). The CMTP was trained for 10 hours 
over a duration of 56 epochs, Fig. 4(a). We implemented early 
stopping and obtained the lowest validation loss at the 15th 
epoch (approximately 2.5 hours of training).  

B. Map Prediction Network Training  
 The Map Prediction Network was trained with a batch size 
of 8. The hyperparameters of the minimum and maximum 
standard deviations for the PF ODE noise were set to 0.002 and 
80, similar to [26]. A Kerras schedule hyperparameter of 7 was 
used with initial and final PF ODE time steps of 2 and 100. The 
initial exponential moving average decay rate of 0.95 was used 
for the target network 𝒇𝜽(, and a learning rate of 0.00002 was 
utilized during training [26]. The scaling factors 𝒶 and 𝒷 from 
Eq. (13) were set to 0.1 and 0.04, respectively. The MPN was 
trained for a total of 100,000 steps over 37 hours. The training 

loss graph is presented in Fig. 4(b). The loss converged to 0.01 
by 100,000 training epochs. 

C. Confidence Network Training  
 The Confidence Network was trained with a batch size of 64 
and a learning rate of 0.0001. The training loss converged to 
2.0	 ×	10c		within 100 epochs after 4.5 hours of training, Fig. 
3(c). 
 

 
(a) (b) (c) 

Fig. 4. (a) CMTP training and validation losses, (b) MPN training loss, and (c) 
CN training loss. 

VII. SIMULATED EXPERIMENTS 
 We conducted two simulated experiments to investigate the 
map prediction performance of 4CNet-E for resource-limited 
exploration in complex unstructured environments. We set the 
total number of denoising time steps, 𝓉-"-5E, as 30, to enable 
multi-pass prediction using 4CNet; thereby, allowing iterative 
refinement of the generated map during robot map prediction. 
The first experiment compares map prediction accuracy of our 
4CNet method and state-of-the-art (SOTA) heuristic and DL 
methods with varying CSPs, and number of robots in the 
environment. The second experiment provides a comparison of 
robot coverage during resource-limited exploration between 
4CNet-E and other exploration methods.  

A. Comparison Study for Map Prediction in Cluttered and 
Unknown Environments 

 A comparison study was performed to evaluate our 4CNet 
subsystem against SOTA heuristic and learning methods for 
different number of robots and CSP. We measured map 
prediction performance using the following metrics: 1) MSE for 
overall prediction error; 2) Obstacle Intersection over Union 
(O-IOU) to measure only the ratio of overlapping obstacle 
pixels between the predicted map and the ground truth map in 
order to evaluate the accuracy of predicted obstacle locations 
and shapes; 3) Feature Similarity Index (FSIM) [66] to assess 
the structural and feature similarity of predicted and ground 
truth heightmaps; and 4) Valid Trajectory Score (VTS), a 
metric we created to measure the proportion of a robot’s 
trajectory that is on traversable terrain relative to the entire 
trajectory in the predicted heightmap: VTS	 = 	 𝜏!d/𝜏!. 𝜏!d 
denotes the sequence of robot positions within a robot trajectory 
that coincides with traversable terrain (non-obstacle space). 
 1) Comparison Methods: We compared 4CNet with three 
SOTA methods. 
1. Database-based method (DB) [23]: The DB method is a 
heuristic-based approach which selects a reference heightmap 
from a database based on feature resemblance. The reference 
map is then integrated into the unexplored target area using 
Gaussian filtering to create a predicted robot heightmap, Fig. 
5(a). The DB method is the only heuristic-based method that 
can address map prediction in unstructured and rough terrain 
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environments through the use of a database containing 
heightmaps from similar environments. 
2. Autoencoder Model method (AEM) [14]: The AEM 
method is a DL approach consisting of encoder and decoder 
networks, Fig. 5(b). Both networks utilize a ResNet50 
architecture with skip connections [14]. The input to the AEM 
is a two-channel image: the first channel contains the grayscale 
partially observed robot heightmap, and the second channel 
consists of the mask of the target region. The mask has 
dimensions of 80 × 	80 pixels, the same as in [14]. The encoder 
network performs down sampling of the partially complete 
robot heightmap to capture spatial features. The decoder 
network reconstructs these spatial features from latent variables 
obtained from the encoder network, producing a predicted map. 
To achieve prediction of the entire unknown region, a sliding 
window technique is implemented. Predictions are then made 
in a cascading manner. The final output of AEM is a 2D 
grayscale robot heightmap with predicted spatial configuration 
of the unknown region. The AEM method was selected as it is 
the only DL method that can generate diverse map predictions 
for unstructured environments, without suffering from mode 
collapse. 
3. Trajectory Conditioned AEM method (T-AEM): We 
extended the AEM method to incorporate robot trajectory data 
for map prediction, i.e., T-AEM, as to the authors’ knowledge, 
trajectory conditioned map prediction methods do not currently 
exist. In T-AEM, the inputs are the same as the AEM approach 
with the addition of robot trajectory embeddings within the 
latent space, Fig. 5(c). Namely, we utilized the Trajectory 
Encoder module from our proposed 4CNet model to allow T-
AEM to condition its map predictions on nearby robot 
trajectories, similar to 4CNet. The T-AEM is used as a 
benchmark to evaluate the impact of adding trajectory 
information to a current SOTA method. 
 

 
 
Fig. 5. (a) Database-based (DB) method, (b) Autoencoder model (AEM) 
method, and (c) Trajectory conditioned AEM method (T-AEM). 
 
 For the DB method, we randomly selected 5,000 
heightmaps from the 𝒟Wa database (the same number of maps 
as in [23]) during each prediction, to balance reference map 

quality and search speed. Both AEM and T-AEM were trained 
on 𝒟Wa. 
 2) Comparison Results: Table I and Figure 6 provide a 
comparative analysis of our 4CNet and the SOTA map 
prediction methods. Each prediction method used as input a 
masked heightmap from 𝒟WaQa, i.e., Fig. 6(a). In general, our 
4CNet achieved the lowest average MSE and highest average 
O-IOU, FSIM and VTS at each CSP level across the number of 
robots. The DB method had the lowest performance among the 
methods. This was due to its reliance on a priori reference maps 
in its dataset to accurately represent an unknown environment. 
Therefore, when new obstacles that were not represented in the 
database were observed, the map prediction from DB resulted 
in misaligned and disjointed obstacle prediction. Furthermore, 
the use of Gaussian blurring to integrate these misaligned maps 
with actual observed maps resulted in an overall blurred 
predicted map, as shown in Fig. 6(b).  
 The AEM method also had higher MSE and lower O-IOU, 
FSIM and VTS than 4CNet. In particular, the lower O-IOU 
score of 0.24 compared to 4CNet (0.91 with 100% CSP) was 
due to AEM not being able to accurately reconstruct obstacles, 
leading to fragmented and pixelated predictions, Fig. 6(c). This 
fragmentation was primarily due to: 1) the single-pass 
prediction of AEM, and 2) the fixed dimension target region 
(e.g., 80 × 	80 pixels) of AEM, that required a sliding window 
prediction technique to condition subsequent predictions based 
on prior predictions, resulting in cascading pixel errors. 
 As the T-AEM method incorporated robot trajectories 
during map prediction, it had a statistically significant 
improvement as defined by Friedman tests (𝑝 < 0.001), in 
terms of MSE, O-IOU and FSIM when compared to AEM with 
100% CSP. This showed robot trajectories improved heightmap 
prediction. However, it is interesting to note that since T-AEM 
had similar VTS to AEM, the robot trajectory embeddings did 
not seem to improve the obstacle prediction accuracy of T-
AEM. This is due to only a portion of the communicated robot 
trajectory being considered within each fixed dimension 
prediction window, leading to the incomplete and fragmented 
obstacle predictions by T-AEM, Fig. 6(d). 
 The better performance of 4CNet was primarily due to the 
advantages of consistency models in: 1) multi-pass prediction, 
and 2) the use of arbitrarily shaped and sized target regions 
during prediction, which were not limited to a fixed dimension. 
Namely, the multi-pass prediction allowed for refinement of the 
map over a sequence of denoising time steps, resulting in 
predictions, Fig. 6(e), that closely matched ground the ground 
truth height maps, Fig. 6(f). This was further supported by 
4CNet having the lowest MSE, and highest FSIM. As 4CNet 
was able to account for varying target regions and thus, 
effectively considered the entire robot trajectories 
communicated during each prediction. Furthermore, 4CNet 
having the highest O-IOU and VTS was due to its ability to 
better predict obstacles in the environment, Fig. 6(e).  
 With respect to CSPs, 4CNet achieved lower MSE, and 
higher O-IOU, FSIM, and VTS compared to T-AEM across all 
CSPs. Friedman Tests conducted across the MSE, O-IOU, 
FSIM and VTS metrics for the AEM and DB methods and all 
CSPs for the 4CNet and T-AEM methods found statistically 
significant differences existed (𝑝 < 0.001). Post-hoc Wilcoxon 
Signed-rank tests with a Bonferroni correction confirmed a 
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statistically significant difference in all four metrics when 
4CNet was compared with each SOTA method, across all CSPs 
(𝑝 < 0.0167). Therefore, validating 4CNet’s improved 
performance over the other methods. 
 

TABLE I 
MAP PREDICTION PERFORMANCE COMPARISON 

 

 
Fig. 6. Predicted map results using the: (a) partially completed maps from 
𝓓𝐌𝐓'𝐓 as input for the: (b) DB, (c) AEM, (d) T-AEM, and (e) 4CNet methods, 
compared to (f) ground truth (GT) maps. Red dotted lines denote communicated 
robot trajectories. 
 

B. Comparison Study for Exploration with Map Prediction in 
Resource Limited 3D Environments 

 We evaluated the performance of 4CNet-E in 3D simulated 
resource limited environments with uneven terrain and 
irregularly shaped obstacles. We introduced two environment 
sizes and three energy budgets. Four robot exploration methods 

were compared with 4CNet-E: namely, exploration methods 
with 1) no map prediction, 2) AEM map prediction, 3) T-AEM 
map prediction, and 4) 4CNet without CN map prediction. We 
measured the percentage of area coverage for each energy 
budget. 
 1) Mobile Robots: Three Clearpath Jackal mobile robots 
were used, Fig. 7(a). Each robot was equipped with a 360-
degree LiDAR with a sensing range of 1.5 m, and both wheel 
encoders and an inertial measurement unit (IMU). 
Communication of robot trajectories was facilitated when the 
robots were within the aforementioned sensing range using 
100% CSP.  
 2) Frontier Selection: Frontiers were selected using the 
utility equation in Eq. (15). The coefficients were set to [4, -1, 
-5] based on an expert-guided search, with the aim to maximize 
𝐼 while minimize  𝒯 and 𝐷. 
 3) Environment: Two 3D environments were randomly 
generated using ROS Gazebo, consisting of uneven traversable 
terrain and irregularly shaped non-traversable obstacles, Fig. 
7(a). The sizes of these environments were 15	m	 × 	15	m 
(225	m*) and 30	m	 × 	30	m	(900	m*). The elevation of the 
traversable terrain ranged from 0 to 0.3 m to represent uneven 
slopes for the Clearpath Jackal robots to traverse. Obstacle 
heights were 0.7 m in the z-axis and were not traversable. Three 
sets of initial robot positions were used as shown in Fig. 7(b): 
where robots started 1) at opposite ends of the environment, 2) 
in the center nearby each other, and 3) random locations with at 
least a minimum distance of 3 meters. 
 

 
(a) (b) 

Fig. 7. (a) Robots in 3D simulation environment with irregularly shaped 
obstacles and uneven terrain. (b) Three sets of initial positions for each of the 3 
mobile robots. S1-3 denote the starting positions of each robot. 
 
 4) Energy Budgets: Robots operated under three distinct 
energy budget levels: Low, Medium, and High. These energy 
budgets allowed the robots to only explore a portion of an 
environment, promoting the use of map prediction in the 
exploration process. The energy budgets were defined 
empirically in terms of area coverage in square meters, 𝐴e, as a 
function of maximum travel distances in meters, 𝑑450, and total 
area of the environment, 𝐴: 
 

𝐴e = 0.0615(𝑑450
>.ghi 𝐴Q>.cji⁄ )	. (18) 

 
Using Eq. (18), energy budgets of 25 m, 50 m, and 75 m were 
chosen for the Low, Medium, and High levels in the 225	m* 
environment size and 40 m for Low, 85 m for Medium, and 125 
m for High in the larger 900	m* environment size. 
 5) Comparison Methods: We compared our 4CNet 
exploration method (4CNet-E) against both non-predictive and 
predictive exploration methods. All exploration methods 

Method CSP # of 
Robots MSE↓ 

O-
IOU
↑ 

FSIM↑ VTS↑ 

DB - 1 78.47 0.29 0.36 0.15 
AEM - 1 69.18 0.24 0.41 0.46 

T-AEM 
25% 2-6 74.53 0.22 0.40 0.45 
50% 2-6 67.37 0.26 0.43 0.48 

100% 2-6 64.97 0.28 0.44 0.47 

4CNet 
(ours) 

25% 2-6 56.23 0.52 0.49 0.82 
50% 2-6 53.20 0.58 0.53 0.89 

100% 2-6 50.35 0.59 0.55 0.91 
↑ indicates a higher value represents better performance. 
↓ indicates a lower value represents better performance. 
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utilized the same frontier selection approach, Eq. (15), in order 
to directly compare performance in terms of map prediction 
influence on exploration. Furthermore, the comparison methods 
utilized a uniform confidence score in estimating the expected 
information gain, as they do not have a method for predicting 
the map prediction uncertainty. Thus, each predicted map pixel 
is assigned the same score for frontier selection. 
1. Non-Predictive Exploration (NPE): NPE is a non-
predictive frontier-based exploration method where 
information gain is naively estimated by assuming all 
unobserved areas within a frontier region are traversable. NPE 
is selected to investigate the influence of map prediction on 
exploration of unknown environments. 
2. AEM Exploration (AEM-E) [14]: AEM-E utilizes the 
SOTA AEM model for map prediction for frontier-based 
exploration.  
3. T-AEM Exploration (T-AEM-E): T-AEM-E integrates the 
T-AEM map prediction approach for frontier-based 
exploration.  
4. 4CNet without CN Exploration (4CNet-C-E): 4CNet-C-E 
is a predictive exploration method that utilizes 4CNet for map 
prediction; however, without the CN module to predict 
confidence scores. This method is used to investigate the impact 
of confidence scores in the evaluation of expected information 
gain during frontier selection for 4CNet.  
 6) Procedure: A total of 72 trials were conducted in the two 
environment sizes, using the three energy budgets. Each 
combination of environment size and energy budget was 
repeated three times with the different initial robot positions in 
Fig. 7(b). 
 7) Results: Table II presents the percentage of area coverage 
with respect to the three energy budgets for 4CNet-E and the 
comparison exploration methods in both environment sizes. In 
general, 4CNet-E achieved the highest percentage of area 
coverage regardless of environment size and energy budget.  
 NPE achieved a lower coverage percentage than 4CNet-E as 
it treated unobserved areas as traversable. This resulted in 
inaccurate information gain estimations, as unobserved regions 
contained both free space and obstacles. AEM-E and T-AEM-
E both utilized predicted maps for expected information gain 
estimation, however, their lower coverage compared to 4CNet-
E was mainly due to inaccuracies in their map predictions as a 
result of the aforementioned single pass prediction and fixed 
target prediction window. 
 4CNet-C-E had higher coverage than NPE, AEM-E and T-
AEM-E. However, since 4CNet-C-E assumes all map 
predictions have equal confidence (uniform confidence score), 
it had lower area coverage compared to 4CNet-E. 4CNet-E, on 
the other hand, uses the predicted confidence scores to weight 
pixels in the predicted map; thereby, improving accuracy of 
expected information gain estimates for each exploration 
frontier. As a result, 4CNet-E enabled each robot to prioritize 
exploration in areas of high uncertainty (low confidence), and 
directly obtaining observations in these regions, to reduce 
uncertainty in future map predictions, leading to more 
information gain through coverage. The Friedman Test showed 
a statistically significant difference was found for percentage of 
area coverage across the environment sizes and energy budgets 
for all exploration methods (𝑝 < 0.001). Post-hoc Wilcoxon 
Signed-rank tests with a Bonferroni correction between 4CNet-

E and each exploration method showed that 4CNet-E had a 
statistically significant higher area coverage than each of these 
exploration methods (𝑝 < 0.0125). 
 

TABLE II 
COMPARISON OF EXPLORATION AREA COVERAGE (PERCENTAGE)  

Env. Size 𝟏𝟓	𝐦	 × 	𝟏𝟓	𝐦 
(𝟐𝟐𝟓	𝐦𝟐) 

𝟑𝟎	𝐦	 × 	𝟑𝟎	𝐦 
(𝟗𝟎𝟎	𝐦𝟐) 

Energy 
Method Low Med High Low Med High 

NPE 18% 30% 39% 18% 31% 42% 
AEM-E 18% 30% 40% 18% 30% 42% 

T-AEM-E 18% 31% 42% 19% 32% 43% 
4CNet-C-E 

(ours) 21% 36% 49% 18% 34% 48% 

4CNet-E  
(our method) 23% 41% 56% 21% 42% 58% 

VIII. EXPERIMENTS 
We conducted an extensive experiment with 4CNet-E in an 

8.5 m by 8.5 m cluttered physical 3D environment consisting of 
irregular shaped obstacles, Fig. 8(a)-(b), with 100% CSP. Two 
Jackal robots and one Ridgeback robot from Clearpath Robotics 
were deployed with Velodyne 360-degree LiDARs. The ground 
truth heightmap was obtained with RTAB-Map using a single 
Jackal robot teleoperated prior to the trial.  
 The robots moved with linear and angular velocities of 
0.15	m/s and 0.3	rad/s, respectively. The three robots started 
at three random start positions, S1, S2 and S3, and ended 
exploration at end positions E1, E2 and E3, Fig. 8(a)-(b). 
During the experiment, the two Jackal robots (R1-R2) had an 
energy budget of 15	m, while the Ridgeback robot (R3) had an 
energy budget of 8	m. These energy budgets allowed all three 
robots to achieve up to a maximum of 45% coverage, thereby, 
requiring map prediction to complete coverage.  

A. Exploration with Map Prediction Results 
 Robot map predictions are shown in Fig. 9(a) – (c) at time 
steps of 0, 103, 196, and 324s. Each robot’s observed regions 
are represented in white and predicted regions are represented 
in gray. At each time step, individual robots generated map 
predictions utilizing direct observations 𝑀!

"#$ and trajectory 
information 𝛿- exchanged with nearby robots. In particular, at 
103s, R3 and R2 exchanged their trajectories, presented in Figs. 
9(b) and (c) by yellow (R3) and blue (R2) dotted lines, 
respectively. A trajectory exchange also occurred between R3 
and R1 at 196s represented by yellow (R3) and green (R1) 
dotted lines in Fig. 9(b) and (c), respectively. Using both 
trajectories obtained from R1 and R2, R3 was able to predict 
the unobserved regions of the obstacle in the middle of the 
environment in Fig. 9(c). The exploration was completed at 
324s, where all three robots depleted their energy budget with 
an area coverage of 41%, 34% and 35% for R1, R2 and R3, 
respectively. The obstacle contours of the predicted maps at 
324s in Fig. 9(a)-(c), are consistent with the ground truth 
obstacles, Fig. 9(d), in terms of completeness and alignment.  
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(a) 

 

(b) 

Fig. 8. Resource limited exploration in a real-world unstructured environment 
with irregularly shaped obstacles and three mobile robots from two viewpoints; 
(a) for the trajectory of R3, (b) for the trajectory of R2.  R1-R3 are Robots 1-3. 
S1-S3 denote the starting positions of R1-R3. E1-E3 denote the final positions 
of R1-R3. 
 

 
Fig. 9. (a) - (c) presents the map predictions at four distinct time steps for 
Robots 1-3: 0s (initial), 103s, 196s and 324s (final). Observed regions are in 
white and target regions for map prediction are in gray. The communicated 
trajectories between R1, R2 and R3 are represented by green, blue, and yellow 
dotted lines, respectively. Red circles represent frontier candidates, while green 
circles represent the selected frontier; and (d) represents the ground truth map. 

B.  Confidence Prediction Results 
 The generated confidence maps for the three robots are in 
Fig. 10. Blue and red regions represent low and high uncertainty 
in the robot map predictions. Namely, a region with high 
prediction uncertainty has a low confidence in the robot's map 

prediction. At 0s, the confidence map for R1 had high 
uncertainty in the top left region of the environment, Fig. 10(a). 
As a result, R1 selected a frontier goal in the adjacent area, as 
indicated by the green Selected Frontier in Fig. 9(a). The 
confidence map had lower prediction uncertainty in areas with 
exchanged robot trajectories due to the additional spatial 
context provided by trajectory embeddings. This was seen at 
103s, where the shared trajectories between R3 (yellow dotted 
line, Fig. 10(b)) and R2 (blue dotted line, Fig. 10(c)) decreased 
the prediction uncertainties in the corresponding regions as 
noted by the blue regions. Consequently, at 103s, R2 chose a 
frontier goal in the upper right area of the environment towards 
an unexplored region with higher prediction uncertainty, Fig. 
9(b). Similar cases of trajectory-influenced confidence and goal 
selection were observed at 196s and 324s for R1 and R3. A 
video of our 4CNet-E approach in both the simulated and real-
world unknown environments with irregularly shaped obstacles 
is presented on our YouTube channel at 
https://youtu.be/QtviqC-MtEM. 
 

 
Fig. 10. (a) – (c) presents the confidence maps of Robot 1, 2 and 3 at time steps 
0s, 103s, 196s and 324s. Red and blue represent high and low prediction 
uncertainty, respectively. White, green, and yellow dotted lines represent the 
communicated R1, R2, and R3 trajectories. 

IX. CONCLUSION 

 In this paper, we present a novel robot exploration with map 
prediction architecture called 4CNet-E that consists of a 
Perception and Communication subsystem, 4CNet for map 
prediction, and an Exploration Planner. 4CNet uniquely 
integrates three components: confidence awareness, contrastive 
pre-training, and a conditional consistency model for map 
prediction during resource-limited robot exploration. Our main 
contributions include: 1) the first utilization of a conditional 
consistency model in the development of a map prediction 
network for prediction of the spatial layouts in partially 
explored environments; 2) the unique application of contrastive 
learning for pre-training a trajectory encoder in order to 
consider both static and dynamic environmental elements; and 
3) the introduction of a confidence network for map prediction 
for guiding robots towards areas of high uncertainty to improve 
map prediction accuracy within constrained energy budgets. 

(a) R1

(b) R2

(c) R3

𝑡 = 0s (Initial) 𝑡 = 103s 𝑡 = 196s 𝑡 = 324s (Final)

Predicted 
Region
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Frontier

Frontier 
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Through extensive simulated comparison experiments, 4CNet-
E was shown to have better performance in terms of map 
prediction accuracy, and area coverage when compared to 
heuristic and learning-based methods. Real-world experiments 
highlight the ability of 4CNet-E to provide high quality map 
predictions containing obstacle contours consistent with ground 
truth maps. Future work will include optimizing map prediction 
speed by reducing the number of time steps required to generate 
accurate map predictions using consistency models. We will 
also test 4CNet-E in larger real-world environments with 
uneven terrains to further validate its performance in diverse 
and challenging scenarios. 
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